File size: 8,668 Bytes
aa559b4
 
f75a23b
f394b25
d184610
a57b988
f394b25
1a611b9
d16299c
1c5bd8e
da7f195
 
 
 
1a611b9
 
aa559b4
da7f195
a4b1ab0
aa559b4
da7f195
 
 
 
aa559b4
da7f195
d8282f1
aa559b4
f6e551c
 
 
 
a57b988
f6e551c
3ed8d49
 
4bfbcac
0fb33af
f75a23b
aa559b4
62ef904
8b1bbeb
1244d40
7a8204e
 
 
 
f6e551c
aa559b4
d16299c
 
 
f6e551c
d16299c
 
aa559b4
a57b988
 
 
aa559b4
7771dd9
1a611b9
 
 
 
 
 
 
 
 
ad85a12
1a611b9
 
 
 
 
 
 
 
 
8b1bbeb
aa559b4
7771dd9
1a611b9
 
 
ad85a12
3ed8d49
1a611b9
 
 
ad85a12
1a611b9
 
 
 
ad85a12
 
aa559b4
ad85a12
a57b988
7771dd9
0e6914c
7771dd9
 
 
 
 
3ed8d49
 
 
 
 
 
7771dd9
a57b988
 
aa559b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7771dd9
1a611b9
 
 
aa559b4
a4b1ab0
aa559b4
73810ec
 
 
 
1a611b9
73810ec
a4b1ab0
aa559b4
 
 
 
 
a4b1ab0
aa559b4
 
a4b1ab0
1a611b9
 
 
aa559b4
1a611b9
 
 
 
 
 
 
a57b988
aa559b4
7771dd9
1a611b9
6762641
aa559b4
 
 
1a611b9
 
aa559b4
 
 
 
 
 
 
 
 
 
 
 
 
1a611b9
aa559b4
6762641
aa559b4
 
 
 
 
 
 
 
 
 
 
7771dd9
 
1a611b9
 
7771dd9
 
 
 
 
 
 
1a611b9
7771dd9
1a611b9
a71a831
55e3db0
aa559b4
abd27cc
d8282f1
a57b988
 
1a611b9
d8282f1
1a611b9
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
# βœ… Fully updated app.py for TxAgent with strict tool validation to prevent runtime errors

import sys
import os
import pandas as pd
import json
import gradio as gr
from typing import List, Tuple, Union, Generator, Dict, Any
import re
from datetime import datetime
import atexit
import torch.distributed as dist
import logging

# Logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger("app")

# Cleanup

def cleanup():
    if dist.is_initialized():
        logger.info("Cleaning up PyTorch distributed process group")
        dist.destroy_process_group()

atexit.register(cleanup)

# Directories
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
for d in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
    os.makedirs(d, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir

# Import TxAgent
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "src")))
from txagent.txagent import TxAgent

MAX_MODEL_TOKENS = 32768
MAX_CHUNK_TOKENS = 8192
MAX_NEW_TOKENS = 2048
PROMPT_OVERHEAD = 500


def clean_response(text: str) -> str:
    text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
    text = re.sub(r"\n{3,}", "\n\n", text)
    text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
    return text.strip()


def estimate_tokens(text: str) -> int:
    return len(text) // 3.5 + 1


def extract_text_from_excel(file_obj: Union[str, Dict[str, Any]]) -> str:
    if isinstance(file_obj, dict) and 'name' in file_obj:
        file_path = file_obj['name']
    elif isinstance(file_obj, str):
        file_path = file_obj
    else:
        raise ValueError("Unsupported file input type")
    if not os.path.exists(file_path):
        raise FileNotFoundError(f"File not found: {file_path}")
    xls = pd.ExcelFile(file_path)
    all_text = []
    for sheet in xls.sheet_names:
        try:
            df = xls.parse(sheet).astype(str).fillna("")
            rows = df.apply(lambda r: " | ".join([c for c in r if c.strip()]), axis=1)
            sheet_text = [f"[{sheet}] {line}" for line in rows if line.strip()]
            all_text.extend(sheet_text)
        except Exception as e:
            logger.warning(f"Failed to parse {sheet}: {e}")
    return "\n".join(all_text)


def split_text_into_chunks(text: str) -> List[str]:
    lines = text.split("\n")
    chunks, current, current_tokens = [], [], 0
    max_tokens = MAX_CHUNK_TOKENS - PROMPT_OVERHEAD
    for line in lines:
        t = estimate_tokens(line)
        if current_tokens + t > max_tokens:
            chunks.append("\n".join(current))
            current, current_tokens = [line], t
        else:
            current.append(line)
            current_tokens += t
    if current:
        chunks.append("\n".join(current))
    return chunks


def build_prompt_from_text(chunk: str) -> str:
    return f"""
### Clinical Records Analysis

Please analyze these clinical notes and provide:
- Key diagnostic indicators
- Current medications and potential issues
- Recommended follow-up actions
- Any inconsistencies or concerns

---

{chunk}

---
Provide a structured response with clear medical reasoning.
"""


def clean_and_rewrite_tool_file(original_path: str, cleaned_path: str) -> bool:
    try:
        with open(original_path, "r") as f:
            data = json.load(f)
        if isinstance(data, dict) and "tools" in data:
            tools = data["tools"]
        elif isinstance(data, list):
            tools = data
        elif isinstance(data, dict) and "name" in data:
            tools = [data]
        else:
            return False
        if not all(isinstance(t, dict) and "name" in t for t in tools):
            return False
        with open(cleaned_path, "w") as out:
            json.dump(tools, out)
        return True
    except Exception as e:
        logger.error(f"Failed to clean tool {original_path}: {e}")
        return False


def init_agent() -> TxAgent:
    new_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
    if not os.path.exists(new_tool_path):
        with open(new_tool_path, 'w') as f:
            json.dump([{"name": "dummy_tool", "description": "test", "version": "1.0"}], f)

    raw_tool_files = {
        'opentarget': '/home/user/.pyenv/versions/3.10.17/lib/python3.10/site-packages/tooluniverse/data/opentarget_tools.json',
        'fda_drug_label': '/home/user/.pyenv/versions/3.10.17/lib/python3.10/site-packages/tooluniverse/data/fda_drug_labeling_tools.json',
        'special_tools': '/home/user/.pyenv/versions/3.10.17/lib/python3.10/site-packages/tooluniverse/data/special_tools.json',
        'monarch': '/home/user/.pyenv/versions/3.10.17/lib/python3.10/site-packages/tooluniverse/data/monarch_tools.json',
        'new_tool': new_tool_path
    }

    validated_paths = {}
    for name, original_path in raw_tool_files.items():
        cleaned_path = os.path.join(tool_cache_dir, f"{name}_cleaned.json")
        if clean_and_rewrite_tool_file(original_path, cleaned_path):
            validated_paths[name] = cleaned_path

    if not validated_paths:
        raise ValueError("No valid tools found after sanitizing.")

    agent = TxAgent(
        model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
        rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
        tool_files_dict=validated_paths,
        force_finish=True,
        enable_checker=True,
        step_rag_num=4,
        seed=100
    )
    agent.init_model()
    return agent


def stream_report(agent: TxAgent, input_file: Union[str, Dict[str, Any]], full_output: str) -> Generator[Tuple[str, Union[str, None], str], None, None]:
    accumulated = ""
    try:
        if input_file is None:
            yield "❌ Upload a valid Excel file.", None, ""
            return
        text = extract_text_from_excel(input_file)
        chunks = split_text_into_chunks(text)
        for i, chunk in enumerate(chunks):
            prompt = build_prompt_from_text(chunk)
            result = ""
            for out in agent.run_gradio_chat(
                message=prompt, history=[], temperature=0.2,
                max_new_tokens=MAX_NEW_TOKENS, max_token=MAX_MODEL_TOKENS,
                call_agent=False, conversation=[]):
                result += out if isinstance(out, str) else out.content
            cleaned = clean_response(result)
            accumulated += f"\n\nπŸ“„ Part {i+1}:\n{cleaned}"
            yield accumulated, None, ""
        summary_prompt = f"Summarize this analysis:\n\n{accumulated}"
        summary = ""
        for out in agent.run_gradio_chat(
            message=summary_prompt, history=[], temperature=0.2,
            max_new_tokens=MAX_NEW_TOKENS, max_token=MAX_MODEL_TOKENS,
            call_agent=False, conversation=[]):
            summary += out if isinstance(out, str) else out.content
        final = clean_response(summary)
        report_path = os.path.join(report_dir, f"report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md")
        with open(report_path, 'w') as f:
            f.write(f"# Clinical Report\n\n{final}")
        yield f"{accumulated}\n\nπŸ“Š Final Summary:\n{final}", report_path, final
    except Exception as e:
        logger.error(f"Stream error: {e}", exc_info=True)
        yield f"❌ Error: {str(e)}", None, ""


def create_ui(agent: TxAgent) -> gr.Blocks:
    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        gr.Markdown("# πŸ₯ Clinical Records Analyzer")
        with gr.Row():
            file_upload = gr.File(label="Upload Excel File", file_types=[".xlsx"])
            analyze_btn = gr.Button("Analyze", variant="primary")
        with gr.Row():
            with gr.Column(scale=2):
                report_output = gr.Markdown()
            with gr.Column(scale=1):
                report_file = gr.File(label="Download", visible=False)
        full_output = gr.State()
        analyze_btn.click(fn=stream_report, inputs=[file_upload, full_output], outputs=[report_output, report_file, full_output])
    return demo


if __name__ == "__main__":
    try:
        agent = init_agent()
        demo = create_ui(agent)
        demo.launch(server_name="0.0.0.0", server_port=7860, share=False)
    except Exception as e:
        logger.error(f"App error: {e}", exc_info=True)
        print(f"❌ Application error: {e}", file=sys.stderr)
        sys.exit(1)