Update app.py
Browse files
app.py
CHANGED
@@ -3,15 +3,14 @@ import os
|
|
3 |
import pandas as pd
|
4 |
import json
|
5 |
import gradio as gr
|
6 |
-
from typing import List, Tuple,
|
7 |
import hashlib
|
8 |
import shutil
|
9 |
import re
|
10 |
from datetime import datetime
|
11 |
-
import time
|
12 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
13 |
|
14 |
-
#
|
15 |
persistent_dir = "/data/hf_cache"
|
16 |
os.makedirs(persistent_dir, exist_ok=True)
|
17 |
|
@@ -20,29 +19,21 @@ tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
|
|
20 |
file_cache_dir = os.path.join(persistent_dir, "cache")
|
21 |
report_dir = os.path.join(persistent_dir, "reports")
|
22 |
|
23 |
-
for
|
24 |
-
os.makedirs(
|
25 |
|
26 |
os.environ["HF_HOME"] = model_cache_dir
|
27 |
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
|
28 |
|
29 |
-
|
30 |
-
src_path = os.path.abspath(os.path.join(current_dir, "src"))
|
31 |
-
sys.path.insert(0, src_path)
|
32 |
-
|
33 |
from txagent.txagent import TxAgent
|
34 |
|
35 |
-
# Constants
|
36 |
MAX_MODEL_TOKENS = 32768
|
37 |
MAX_CHUNK_TOKENS = 8192
|
38 |
MAX_NEW_TOKENS = 2048
|
39 |
PROMPT_OVERHEAD = 500
|
40 |
|
41 |
def clean_response(text: str) -> str:
|
42 |
-
try:
|
43 |
-
text = text.encode('utf-8', 'surrogatepass').decode('utf-8')
|
44 |
-
except UnicodeError:
|
45 |
-
text = text.encode('utf-8', 'replace').decode('utf-8')
|
46 |
text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
|
47 |
text = re.sub(r"\n{3,}", "\n\n", text)
|
48 |
text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
|
@@ -51,286 +42,126 @@ def clean_response(text: str) -> str:
|
|
51 |
def estimate_tokens(text: str) -> int:
|
52 |
return len(text) // 3.5 + 1
|
53 |
|
54 |
-
def extract_text_from_excel(
|
55 |
all_text = []
|
56 |
try:
|
57 |
-
xls = pd.ExcelFile(
|
58 |
-
for sheet_name in xls.sheet_names:
|
59 |
-
df = xls.parse(sheet_name)
|
60 |
-
df = df.astype(str).fillna("")
|
61 |
-
rows = df.apply(lambda row: " | ".join(row), axis=1)
|
62 |
-
sheet_text = [f"[{sheet_name}] {line}" for line in rows]
|
63 |
-
all_text.extend(sheet_text)
|
64 |
except Exception as e:
|
65 |
-
raise ValueError(f"
|
|
|
|
|
|
|
|
|
|
|
66 |
return "\n".join(all_text)
|
67 |
|
68 |
-
def split_text_into_chunks(text: str, max_tokens: int = MAX_CHUNK_TOKENS) -> List[str]:
|
69 |
-
|
70 |
-
|
71 |
-
raise ValueError(f"Effective max tokens ({effective_max_tokens}) must be positive.")
|
72 |
-
lines = text.split("\n")
|
73 |
-
chunks, current_chunk, current_tokens = [], [], 0
|
74 |
for line in lines:
|
75 |
-
|
76 |
-
if
|
77 |
-
if
|
78 |
-
chunks.append("\n".join(
|
79 |
-
|
|
|
|
|
80 |
else:
|
81 |
-
|
82 |
-
|
83 |
-
if
|
84 |
-
chunks.append("\n".join(
|
85 |
return chunks
|
86 |
|
87 |
def build_prompt_from_text(chunk: str) -> str:
|
88 |
return f"""
|
89 |
### Unstructured Clinical Records
|
90 |
|
91 |
-
|
92 |
-
|
93 |
-
**Objective:** Identify patterns, missed diagnoses, inconsistencies, and follow-up gaps.
|
94 |
-
|
95 |
-
Here is the extracted content chunk:
|
96 |
-
|
97 |
-
{chunk}
|
98 |
-
|
99 |
-
Please analyze the above and provide:
|
100 |
- Diagnostic Patterns
|
101 |
- Medication Issues
|
102 |
- Missed Opportunities
|
103 |
- Inconsistencies
|
104 |
- Follow-up Recommendations
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
"""
|
106 |
|
107 |
def init_agent():
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
shutil.copy(default_tool_path, target_tool_path)
|
112 |
agent = TxAgent(
|
113 |
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
|
114 |
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
|
115 |
-
tool_files_dict={"new_tool":
|
116 |
force_finish=True,
|
117 |
enable_checker=True,
|
118 |
step_rag_num=4,
|
119 |
-
seed=100
|
120 |
-
additional_default_tools=[]
|
121 |
)
|
122 |
agent.init_model()
|
123 |
return agent
|
124 |
|
125 |
-
def
|
126 |
-
|
127 |
-
report_path = None
|
128 |
-
|
129 |
-
if file is None or not hasattr(file, "name"):
|
130 |
-
messages.append({"role": "assistant", "content": "❌ Please upload a valid Excel file before analyzing."})
|
131 |
-
return messages, report_path
|
132 |
-
|
133 |
-
try:
|
134 |
-
messages.append({"role": "user", "content": f"Processing Excel file: {os.path.basename(file.name)}"})
|
135 |
-
messages.append({"role": "assistant", "content": "⏳ Extracting and analyzing data..."})
|
136 |
-
extracted_text = extract_text_from_excel(file.name)
|
137 |
-
chunks = split_text_into_chunks(extracted_text)
|
138 |
-
chunk_responses = [None] * len(chunks)
|
139 |
-
|
140 |
-
def analyze_chunk(index: int, chunk: str) -> Tuple[int, str]:
|
141 |
-
prompt = build_prompt_from_text(chunk)
|
142 |
-
prompt_tokens = estimate_tokens(prompt)
|
143 |
-
if prompt_tokens > MAX_MODEL_TOKENS:
|
144 |
-
return index, f"❌ Chunk {index+1} prompt too long ({prompt_tokens} tokens). Skipping..."
|
145 |
-
response = ""
|
146 |
-
try:
|
147 |
-
for result in agent.run_gradio_chat(
|
148 |
-
message=prompt,
|
149 |
-
history=[],
|
150 |
-
temperature=0.2,
|
151 |
-
max_new_tokens=MAX_NEW_TOKENS,
|
152 |
-
max_token=MAX_MODEL_TOKENS,
|
153 |
-
call_agent=False,
|
154 |
-
conversation=[],
|
155 |
-
):
|
156 |
-
if isinstance(result, str):
|
157 |
-
response += result
|
158 |
-
elif hasattr(result, "content"):
|
159 |
-
response += result.content
|
160 |
-
elif isinstance(result, list):
|
161 |
-
for r in result:
|
162 |
-
if hasattr(r, "content"):
|
163 |
-
response += r.content
|
164 |
-
except Exception as e:
|
165 |
-
return index, f"❌ Error analyzing chunk {index+1}: {str(e)}"
|
166 |
-
return index, clean_response(response)
|
167 |
-
|
168 |
-
with ThreadPoolExecutor(max_workers=1) as executor:
|
169 |
-
futures = [executor.submit(analyze_chunk, i, chunk) for i, chunk in enumerate(chunks)]
|
170 |
-
for future in as_completed(futures):
|
171 |
-
i, result = future.result()
|
172 |
-
chunk_responses[i] = result
|
173 |
-
if not result.startswith("❌"):
|
174 |
-
messages.append({"role": "assistant", "content": f"✅ Chunk {i+1} analysis complete"})
|
175 |
-
else:
|
176 |
-
messages.append({"role": "assistant", "content": result})
|
177 |
-
|
178 |
-
valid_responses = [res for res in chunk_responses if not res.startswith("❌")]
|
179 |
-
if not valid_responses:
|
180 |
-
messages.append({"role": "assistant", "content": "❌ No valid chunk responses to summarize."})
|
181 |
-
return messages, report_path
|
182 |
-
|
183 |
-
summary = ""
|
184 |
-
current_summary_tokens = 0
|
185 |
-
for i, response in enumerate(valid_responses):
|
186 |
-
response_tokens = estimate_tokens(response)
|
187 |
-
if current_summary_tokens + response_tokens > MAX_MODEL_TOKENS - PROMPT_OVERHEAD - MAX_NEW_TOKENS:
|
188 |
-
summary_prompt = f"Summarize the following analysis:\n\n{summary}\n\nProvide a concise summary."
|
189 |
-
summary_response = ""
|
190 |
-
try:
|
191 |
-
for result in agent.run_gradio_chat(
|
192 |
-
message=summary_prompt,
|
193 |
-
history=[],
|
194 |
-
temperature=0.2,
|
195 |
-
max_new_tokens=MAX_NEW_TOKENS,
|
196 |
-
max_token=MAX_MODEL_TOKENS,
|
197 |
-
call_agent=False,
|
198 |
-
conversation=[],
|
199 |
-
):
|
200 |
-
if isinstance(result, str):
|
201 |
-
summary_response += result
|
202 |
-
elif hasattr(result, "content"):
|
203 |
-
summary_response += result.content
|
204 |
-
elif isinstance(result, list):
|
205 |
-
for r in result:
|
206 |
-
if hasattr(r, "content"):
|
207 |
-
summary_response += r.content
|
208 |
-
summary = clean_response(summary_response)
|
209 |
-
current_summary_tokens = estimate_tokens(summary)
|
210 |
-
except Exception as e:
|
211 |
-
messages.append({"role": "assistant", "content": f"❌ Error summarizing intermediate results: {str(e)}"})
|
212 |
-
return messages, report_path
|
213 |
-
summary += f"\n\n### Chunk {i+1} Analysis\n{response}"
|
214 |
-
current_summary_tokens += response_tokens
|
215 |
-
|
216 |
-
final_prompt = f"Summarize the key findings from the following analyses:\n\n{summary}"
|
217 |
-
messages.append({"role": "assistant", "content": "📊 Generating final report..."})
|
218 |
-
|
219 |
-
final_report_text = ""
|
220 |
-
try:
|
221 |
-
for result in agent.run_gradio_chat(
|
222 |
-
message=final_prompt,
|
223 |
-
history=[],
|
224 |
-
temperature=0.2,
|
225 |
-
max_new_tokens=MAX_NEW_TOKENS,
|
226 |
-
max_token=MAX_MODEL_TOKENS,
|
227 |
-
call_agent=False,
|
228 |
-
conversation=[],
|
229 |
-
):
|
230 |
-
if isinstance(result, str):
|
231 |
-
final_report_text += result
|
232 |
-
elif hasattr(result, "content"):
|
233 |
-
final_report_text += result.content
|
234 |
-
elif isinstance(result, list):
|
235 |
-
for r in result:
|
236 |
-
if hasattr(r, "content"):
|
237 |
-
final_report_text += r.content
|
238 |
-
except Exception as e:
|
239 |
-
messages.append({"role": "assistant", "content": f"❌ Error generating final report: {str(e)}"})
|
240 |
-
return messages, report_path
|
241 |
-
|
242 |
-
final_report = f"# 🧠 Final Patient Report\n\n{clean_response(final_report_text)}"
|
243 |
-
messages[-1]["content"] = f"📊 Final Report:\n\n{clean_response(final_report_text)}"
|
244 |
-
|
245 |
-
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
|
246 |
-
report_path = os.path.join(report_dir, f"report_{timestamp}.md")
|
247 |
-
|
248 |
-
with open(report_path, 'w') as f:
|
249 |
-
f.write(final_report)
|
250 |
-
|
251 |
-
messages.append({"role": "assistant", "content": f"✅ Report generated and saved: report_{timestamp}.md"})
|
252 |
-
|
253 |
-
except Exception as e:
|
254 |
-
messages.append({"role": "assistant", "content": f"❌ Error processing file: {str(e)}"})
|
255 |
-
|
256 |
-
return messages, report_path
|
257 |
|
258 |
def create_ui(agent):
|
259 |
-
with gr.Blocks(
|
260 |
-
|
261 |
-
|
|
|
|
|
|
|
|
|
|
|
262 |
.gradio-container {
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
}
|
268 |
-
.gr-button
|
269 |
-
background: linear-gradient(
|
270 |
color: white;
|
|
|
271 |
border: none;
|
|
|
272 |
border-radius: 8px;
|
|
|
273 |
}
|
274 |
-
.gr-button
|
275 |
-
background: linear-gradient(
|
276 |
}
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
.
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
.chat-message-content ul {
|
293 |
-
padding-left: 1.2em;
|
294 |
-
margin: 0.4em 0;
|
295 |
-
}
|
296 |
-
"""
|
297 |
-
) as demo:
|
298 |
-
gr.Markdown("""
|
299 |
-
<h2 style='color:#182848'>🏥 Patient History Analysis Tool</h2>
|
300 |
-
<p style='color:#444;'>Upload an Excel file containing clinical data. The assistant will analyze it for patterns, inconsistencies, and recommendations.</p>
|
301 |
-
""")
|
302 |
-
|
303 |
-
with gr.Row():
|
304 |
-
with gr.Column(scale=3):
|
305 |
-
chatbot = gr.Chatbot(
|
306 |
-
label="Clinical Assistant",
|
307 |
-
show_copy_button=True,
|
308 |
-
height=600,
|
309 |
-
type="messages",
|
310 |
-
avatar_images=(None, "https://i.imgur.com/6wX7Zb4.png"),
|
311 |
-
render_markdown=True
|
312 |
-
)
|
313 |
-
with gr.Column(scale=1):
|
314 |
-
file_upload = gr.File(label="Upload Excel File", file_types=[".xlsx"], height=100)
|
315 |
-
analyze_btn = gr.Button("🧠 Analyze Patient History", variant="primary", elem_classes="primary")
|
316 |
-
report_output = gr.File(label="Download Report", visible=False, interactive=False)
|
317 |
-
|
318 |
-
chatbot_state = gr.State(value=[])
|
319 |
-
|
320 |
-
def update_ui(file, current_state):
|
321 |
-
messages, report_path = process_final_report(agent, file, current_state)
|
322 |
-
formatted_messages = []
|
323 |
-
for msg in messages:
|
324 |
-
role = msg.get("role")
|
325 |
-
content = msg.get("content", "")
|
326 |
-
if role == "assistant":
|
327 |
-
content = content.replace("- ", "\n- ")
|
328 |
-
content = f"<div class='chat-message-content'>{content}</div>"
|
329 |
-
formatted_messages.append({"role": role, "content": content})
|
330 |
-
report_update = gr.update(visible=report_path is not None, value=report_path)
|
331 |
-
return formatted_messages, report_update, formatted_messages
|
332 |
-
|
333 |
-
analyze_btn.click(fn=update_ui, inputs=[file_upload, chatbot_state], outputs=[chatbot, report_output, chatbot_state], api_name="analyze")
|
334 |
|
335 |
return demo
|
336 |
|
@@ -338,7 +169,7 @@ if __name__ == "__main__":
|
|
338 |
try:
|
339 |
agent = init_agent()
|
340 |
demo = create_ui(agent)
|
341 |
-
demo.launch(server_name="0.0.0.0", server_port=7860,
|
342 |
except Exception as e:
|
343 |
print(f"Error: {str(e)}")
|
344 |
-
sys.exit(1)
|
|
|
3 |
import pandas as pd
|
4 |
import json
|
5 |
import gradio as gr
|
6 |
+
from typing import List, Tuple, Union, Generator
|
7 |
import hashlib
|
8 |
import shutil
|
9 |
import re
|
10 |
from datetime import datetime
|
|
|
11 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
12 |
|
13 |
+
# Setup directories
|
14 |
persistent_dir = "/data/hf_cache"
|
15 |
os.makedirs(persistent_dir, exist_ok=True)
|
16 |
|
|
|
19 |
file_cache_dir = os.path.join(persistent_dir, "cache")
|
20 |
report_dir = os.path.join(persistent_dir, "reports")
|
21 |
|
22 |
+
for d in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
|
23 |
+
os.makedirs(d, exist_ok=True)
|
24 |
|
25 |
os.environ["HF_HOME"] = model_cache_dir
|
26 |
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
|
27 |
|
28 |
+
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "src")))
|
|
|
|
|
|
|
29 |
from txagent.txagent import TxAgent
|
30 |
|
|
|
31 |
MAX_MODEL_TOKENS = 32768
|
32 |
MAX_CHUNK_TOKENS = 8192
|
33 |
MAX_NEW_TOKENS = 2048
|
34 |
PROMPT_OVERHEAD = 500
|
35 |
|
36 |
def clean_response(text: str) -> str:
|
|
|
|
|
|
|
|
|
37 |
text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
|
38 |
text = re.sub(r"\n{3,}", "\n\n", text)
|
39 |
text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
|
|
|
42 |
def estimate_tokens(text: str) -> int:
|
43 |
return len(text) // 3.5 + 1
|
44 |
|
45 |
+
def extract_text_from_excel(file_obj: Union[str, os.PathLike, 'file']) -> str:
|
46 |
all_text = []
|
47 |
try:
|
48 |
+
xls = pd.ExcelFile(file_obj)
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
except Exception as e:
|
50 |
+
raise ValueError(f"❌ Error reading Excel file: {e}")
|
51 |
+
for sheet_name in xls.sheet_names:
|
52 |
+
df = xls.parse(sheet_name).astype(str).fillna("")
|
53 |
+
rows = df.apply(lambda row: " | ".join([cell for cell in row if cell.strip()]), axis=1)
|
54 |
+
sheet_text = [f"[{sheet_name}] {line}" for line in rows if line.strip()]
|
55 |
+
all_text.extend(sheet_text)
|
56 |
return "\n".join(all_text)
|
57 |
|
58 |
+
def split_text_into_chunks(text: str, max_tokens: int = MAX_CHUNK_TOKENS, max_chunks: int = 30) -> List[str]:
|
59 |
+
effective_max = max_tokens - PROMPT_OVERHEAD
|
60 |
+
lines, chunks, curr_chunk, curr_tokens = text.split("\n"), [], [], 0
|
|
|
|
|
|
|
61 |
for line in lines:
|
62 |
+
t = estimate_tokens(line)
|
63 |
+
if curr_tokens + t > effective_max:
|
64 |
+
if curr_chunk:
|
65 |
+
chunks.append("\n".join(curr_chunk))
|
66 |
+
if len(chunks) >= max_chunks:
|
67 |
+
break
|
68 |
+
curr_chunk, curr_tokens = [line], t
|
69 |
else:
|
70 |
+
curr_chunk.append(line)
|
71 |
+
curr_tokens += t
|
72 |
+
if curr_chunk and len(chunks) < max_chunks:
|
73 |
+
chunks.append("\n".join(curr_chunk))
|
74 |
return chunks
|
75 |
|
76 |
def build_prompt_from_text(chunk: str) -> str:
|
77 |
return f"""
|
78 |
### Unstructured Clinical Records
|
79 |
|
80 |
+
Analyze the following clinical notes and provide a detailed, concise summary focusing on:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
- Diagnostic Patterns
|
82 |
- Medication Issues
|
83 |
- Missed Opportunities
|
84 |
- Inconsistencies
|
85 |
- Follow-up Recommendations
|
86 |
+
|
87 |
+
---
|
88 |
+
|
89 |
+
{chunk}
|
90 |
+
|
91 |
+
---
|
92 |
+
Respond in well-structured bullet points with medical reasoning.
|
93 |
"""
|
94 |
|
95 |
def init_agent():
|
96 |
+
tool_path = os.path.join(tool_cache_dir, "new_tool.json")
|
97 |
+
if not os.path.exists(tool_path):
|
98 |
+
shutil.copy(os.path.abspath("data/new_tool.json"), tool_path)
|
|
|
99 |
agent = TxAgent(
|
100 |
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
|
101 |
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
|
102 |
+
tool_files_dict={"new_tool": tool_path},
|
103 |
force_finish=True,
|
104 |
enable_checker=True,
|
105 |
step_rag_num=4,
|
106 |
+
seed=100
|
|
|
107 |
)
|
108 |
agent.init_model()
|
109 |
return agent
|
110 |
|
111 |
+
def stream_report(agent, file: Union[str, 'file'], full_output: str) -> Generator[Tuple[str, Union[str, None], str], None, None]:
|
112 |
+
yield from stream_report_wrapper(agent)(file, full_output)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
|
114 |
def create_ui(agent):
|
115 |
+
with gr.Blocks(css="""
|
116 |
+
body {
|
117 |
+
background: #10141f;
|
118 |
+
color: #ffffff;
|
119 |
+
font-family: 'Inter', sans-serif;
|
120 |
+
margin: 0;
|
121 |
+
padding: 0;
|
122 |
+
}
|
123 |
.gradio-container {
|
124 |
+
padding: 30px;
|
125 |
+
width: 100vw;
|
126 |
+
max-width: 100%;
|
127 |
+
border-radius: 0;
|
128 |
+
background-color: #1a1f2e;
|
129 |
+
}
|
130 |
+
.output-markdown {
|
131 |
+
background-color: #131720;
|
132 |
+
border-radius: 12px;
|
133 |
+
padding: 20px;
|
134 |
+
min-height: 600px;
|
135 |
+
overflow-y: auto;
|
136 |
+
border: 1px solid #2c3344;
|
137 |
}
|
138 |
+
.gr-button {
|
139 |
+
background: linear-gradient(135deg, #4b4ced, #37b6e9);
|
140 |
color: white;
|
141 |
+
font-weight: 500;
|
142 |
border: none;
|
143 |
+
padding: 10px 20px;
|
144 |
border-radius: 8px;
|
145 |
+
transition: background 0.3s ease;
|
146 |
}
|
147 |
+
.gr-button:hover {
|
148 |
+
background: linear-gradient(135deg, #37b6e9, #4b4ced);
|
149 |
}
|
150 |
+
""") as demo:
|
151 |
+
gr.Markdown("""# 🧠 Clinical Reasoning Assistant
|
152 |
+
Upload clinical Excel records below and click **Analyze** to generate a medical summary.
|
153 |
+
""")
|
154 |
+
file_upload = gr.File(label="Upload Excel File", file_types=[".xlsx"])
|
155 |
+
analyze_btn = gr.Button("Analyze")
|
156 |
+
report_output_markdown = gr.Markdown(elem_classes="output-markdown")
|
157 |
+
report_file = gr.File(label="Download Report", visible=False)
|
158 |
+
full_output = gr.State(value="")
|
159 |
+
|
160 |
+
analyze_btn.click(
|
161 |
+
fn=stream_report,
|
162 |
+
inputs=[file_upload, full_output],
|
163 |
+
outputs=[report_output_markdown, report_file, full_output]
|
164 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
|
166 |
return demo
|
167 |
|
|
|
169 |
try:
|
170 |
agent = init_agent()
|
171 |
demo = create_ui(agent)
|
172 |
+
demo.launch(server_name="0.0.0.0", server_port=7860, allowed_paths=["/data/hf_cache/reports"], share=True)
|
173 |
except Exception as e:
|
174 |
print(f"Error: {str(e)}")
|
175 |
+
sys.exit(1)
|