Update app.py
Browse files
app.py
CHANGED
@@ -3,14 +3,15 @@ import os
|
|
3 |
import pandas as pd
|
4 |
import json
|
5 |
import gradio as gr
|
6 |
-
from typing import List, Tuple,
|
7 |
import hashlib
|
8 |
import shutil
|
9 |
import re
|
10 |
from datetime import datetime
|
|
|
11 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
12 |
|
13 |
-
#
|
14 |
persistent_dir = "/data/hf_cache"
|
15 |
os.makedirs(persistent_dir, exist_ok=True)
|
16 |
|
@@ -19,21 +20,29 @@ tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
|
|
19 |
file_cache_dir = os.path.join(persistent_dir, "cache")
|
20 |
report_dir = os.path.join(persistent_dir, "reports")
|
21 |
|
22 |
-
for
|
23 |
-
os.makedirs(
|
24 |
|
25 |
os.environ["HF_HOME"] = model_cache_dir
|
26 |
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
|
27 |
|
28 |
-
|
|
|
|
|
|
|
29 |
from txagent.txagent import TxAgent
|
30 |
|
|
|
31 |
MAX_MODEL_TOKENS = 32768
|
32 |
MAX_CHUNK_TOKENS = 8192
|
33 |
MAX_NEW_TOKENS = 2048
|
34 |
PROMPT_OVERHEAD = 500
|
35 |
|
36 |
def clean_response(text: str) -> str:
|
|
|
|
|
|
|
|
|
37 |
text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
|
38 |
text = re.sub(r"\n{3,}", "\n\n", text)
|
39 |
text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
|
@@ -42,126 +51,286 @@ def clean_response(text: str) -> str:
|
|
42 |
def estimate_tokens(text: str) -> int:
|
43 |
return len(text) // 3.5 + 1
|
44 |
|
45 |
-
def extract_text_from_excel(
|
46 |
all_text = []
|
47 |
try:
|
48 |
-
xls = pd.ExcelFile(
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
except Exception as e:
|
50 |
-
raise ValueError(f"
|
51 |
-
for sheet_name in xls.sheet_names:
|
52 |
-
df = xls.parse(sheet_name).astype(str).fillna("")
|
53 |
-
rows = df.apply(lambda row: " | ".join([cell for cell in row if cell.strip()]), axis=1)
|
54 |
-
sheet_text = [f"[{sheet_name}] {line}" for line in rows if line.strip()]
|
55 |
-
all_text.extend(sheet_text)
|
56 |
return "\n".join(all_text)
|
57 |
|
58 |
-
def split_text_into_chunks(text: str, max_tokens: int = MAX_CHUNK_TOKENS
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
61 |
for line in lines:
|
62 |
-
|
63 |
-
if
|
64 |
-
if
|
65 |
-
chunks.append("\n".join(
|
66 |
-
|
67 |
-
break
|
68 |
-
curr_chunk, curr_tokens = [line], t
|
69 |
else:
|
70 |
-
|
71 |
-
|
72 |
-
if
|
73 |
-
chunks.append("\n".join(
|
74 |
return chunks
|
75 |
|
76 |
def build_prompt_from_text(chunk: str) -> str:
|
77 |
return f"""
|
78 |
### Unstructured Clinical Records
|
79 |
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
- Diagnostic Patterns
|
82 |
- Medication Issues
|
83 |
- Missed Opportunities
|
84 |
- Inconsistencies
|
85 |
- Follow-up Recommendations
|
86 |
-
|
87 |
-
---
|
88 |
-
|
89 |
-
{chunk}
|
90 |
-
|
91 |
-
---
|
92 |
-
Respond in well-structured bullet points with medical reasoning.
|
93 |
"""
|
94 |
|
95 |
def init_agent():
|
96 |
-
|
97 |
-
|
98 |
-
|
|
|
99 |
agent = TxAgent(
|
100 |
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
|
101 |
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
|
102 |
-
tool_files_dict={"new_tool":
|
103 |
force_finish=True,
|
104 |
enable_checker=True,
|
105 |
step_rag_num=4,
|
106 |
-
seed=100
|
|
|
107 |
)
|
108 |
agent.init_model()
|
109 |
return agent
|
110 |
|
111 |
-
def
|
112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
|
114 |
def create_ui(agent):
|
115 |
-
with gr.Blocks(
|
116 |
-
|
117 |
-
|
118 |
-
color: #ffffff;
|
119 |
-
font-family: 'Inter', sans-serif;
|
120 |
-
margin: 0;
|
121 |
-
padding: 0;
|
122 |
-
}
|
123 |
.gradio-container {
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
background-color: #1a1f2e;
|
129 |
-
}
|
130 |
-
.output-markdown {
|
131 |
-
background-color: #131720;
|
132 |
-
border-radius: 12px;
|
133 |
-
padding: 20px;
|
134 |
-
min-height: 600px;
|
135 |
-
overflow-y: auto;
|
136 |
-
border: 1px solid #2c3344;
|
137 |
}
|
138 |
-
.gr-button {
|
139 |
-
background: linear-gradient(
|
140 |
color: white;
|
141 |
-
font-weight: 500;
|
142 |
border: none;
|
143 |
-
padding: 10px 20px;
|
144 |
border-radius: 8px;
|
145 |
-
transition: background 0.3s ease;
|
146 |
}
|
147 |
-
.gr-button:hover {
|
148 |
-
background: linear-gradient(
|
149 |
}
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
|
166 |
return demo
|
167 |
|
@@ -169,7 +338,7 @@ if __name__ == "__main__":
|
|
169 |
try:
|
170 |
agent = init_agent()
|
171 |
demo = create_ui(agent)
|
172 |
-
demo.launch(server_name="0.0.0.0", server_port=7860, allowed_paths=["/data/hf_cache/reports"], share=
|
173 |
except Exception as e:
|
174 |
print(f"Error: {str(e)}")
|
175 |
-
sys.exit(1)
|
|
|
3 |
import pandas as pd
|
4 |
import json
|
5 |
import gradio as gr
|
6 |
+
from typing import List, Tuple, Dict, Any, Union
|
7 |
import hashlib
|
8 |
import shutil
|
9 |
import re
|
10 |
from datetime import datetime
|
11 |
+
import time
|
12 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
13 |
|
14 |
+
# Configuration and setup
|
15 |
persistent_dir = "/data/hf_cache"
|
16 |
os.makedirs(persistent_dir, exist_ok=True)
|
17 |
|
|
|
20 |
file_cache_dir = os.path.join(persistent_dir, "cache")
|
21 |
report_dir = os.path.join(persistent_dir, "reports")
|
22 |
|
23 |
+
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
|
24 |
+
os.makedirs(directory, exist_ok=True)
|
25 |
|
26 |
os.environ["HF_HOME"] = model_cache_dir
|
27 |
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
|
28 |
|
29 |
+
current_dir = os.path.dirname(os.path.abspath(__file__))
|
30 |
+
src_path = os.path.abspath(os.path.join(current_dir, "src"))
|
31 |
+
sys.path.insert(0, src_path)
|
32 |
+
|
33 |
from txagent.txagent import TxAgent
|
34 |
|
35 |
+
# Constants
|
36 |
MAX_MODEL_TOKENS = 32768
|
37 |
MAX_CHUNK_TOKENS = 8192
|
38 |
MAX_NEW_TOKENS = 2048
|
39 |
PROMPT_OVERHEAD = 500
|
40 |
|
41 |
def clean_response(text: str) -> str:
|
42 |
+
try:
|
43 |
+
text = text.encode('utf-8', 'surrogatepass').decode('utf-8')
|
44 |
+
except UnicodeError:
|
45 |
+
text = text.encode('utf-8', 'replace').decode('utf-8')
|
46 |
text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
|
47 |
text = re.sub(r"\n{3,}", "\n\n", text)
|
48 |
text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
|
|
|
51 |
def estimate_tokens(text: str) -> int:
|
52 |
return len(text) // 3.5 + 1
|
53 |
|
54 |
+
def extract_text_from_excel(file_path: str) -> str:
|
55 |
all_text = []
|
56 |
try:
|
57 |
+
xls = pd.ExcelFile(file_path)
|
58 |
+
for sheet_name in xls.sheet_names:
|
59 |
+
df = xls.parse(sheet_name)
|
60 |
+
df = df.astype(str).fillna("")
|
61 |
+
rows = df.apply(lambda row: " | ".join(row), axis=1)
|
62 |
+
sheet_text = [f"[{sheet_name}] {line}" for line in rows]
|
63 |
+
all_text.extend(sheet_text)
|
64 |
except Exception as e:
|
65 |
+
raise ValueError(f"Failed to extract text from Excel file: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
66 |
return "\n".join(all_text)
|
67 |
|
68 |
+
def split_text_into_chunks(text: str, max_tokens: int = MAX_CHUNK_TOKENS) -> List[str]:
|
69 |
+
effective_max_tokens = max_tokens - PROMPT_OVERHEAD
|
70 |
+
if effective_max_tokens <= 0:
|
71 |
+
raise ValueError(f"Effective max tokens ({effective_max_tokens}) must be positive.")
|
72 |
+
lines = text.split("\n")
|
73 |
+
chunks, current_chunk, current_tokens = [], [], 0
|
74 |
for line in lines:
|
75 |
+
line_tokens = estimate_tokens(line)
|
76 |
+
if current_tokens + line_tokens > effective_max_tokens:
|
77 |
+
if current_chunk:
|
78 |
+
chunks.append("\n".join(current_chunk))
|
79 |
+
current_chunk, current_tokens = [line], line_tokens
|
|
|
|
|
80 |
else:
|
81 |
+
current_chunk.append(line)
|
82 |
+
current_tokens += line_tokens
|
83 |
+
if current_chunk:
|
84 |
+
chunks.append("\n".join(current_chunk))
|
85 |
return chunks
|
86 |
|
87 |
def build_prompt_from_text(chunk: str) -> str:
|
88 |
return f"""
|
89 |
### Unstructured Clinical Records
|
90 |
|
91 |
+
You are reviewing unstructured, mixed-format clinical documentation from various forms, tables, and sheets.
|
92 |
+
|
93 |
+
**Objective:** Identify patterns, missed diagnoses, inconsistencies, and follow-up gaps.
|
94 |
+
|
95 |
+
Here is the extracted content chunk:
|
96 |
+
|
97 |
+
{chunk}
|
98 |
+
|
99 |
+
Please analyze the above and provide:
|
100 |
- Diagnostic Patterns
|
101 |
- Medication Issues
|
102 |
- Missed Opportunities
|
103 |
- Inconsistencies
|
104 |
- Follow-up Recommendations
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
"""
|
106 |
|
107 |
def init_agent():
|
108 |
+
default_tool_path = os.path.abspath("data/new_tool.json")
|
109 |
+
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
|
110 |
+
if not os.path.exists(target_tool_path):
|
111 |
+
shutil.copy(default_tool_path, target_tool_path)
|
112 |
agent = TxAgent(
|
113 |
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
|
114 |
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
|
115 |
+
tool_files_dict={"new_tool": target_tool_path},
|
116 |
force_finish=True,
|
117 |
enable_checker=True,
|
118 |
step_rag_num=4,
|
119 |
+
seed=100,
|
120 |
+
additional_default_tools=[]
|
121 |
)
|
122 |
agent.init_model()
|
123 |
return agent
|
124 |
|
125 |
+
def process_final_report(agent, file, chatbot_state: List[Dict[str, str]]) -> Tuple[List[Dict[str, str]], Union[str, None]]:
|
126 |
+
messages = chatbot_state if chatbot_state else []
|
127 |
+
report_path = None
|
128 |
+
|
129 |
+
if file is None or not hasattr(file, "name"):
|
130 |
+
messages.append({"role": "assistant", "content": "β Please upload a valid Excel file before analyzing."})
|
131 |
+
return messages, report_path
|
132 |
+
|
133 |
+
try:
|
134 |
+
messages.append({"role": "user", "content": f"Processing Excel file: {os.path.basename(file.name)}"})
|
135 |
+
messages.append({"role": "assistant", "content": "β³ Extracting and analyzing data..."})
|
136 |
+
extracted_text = extract_text_from_excel(file.name)
|
137 |
+
chunks = split_text_into_chunks(extracted_text)
|
138 |
+
chunk_responses = [None] * len(chunks)
|
139 |
+
|
140 |
+
def analyze_chunk(index: int, chunk: str) -> Tuple[int, str]:
|
141 |
+
prompt = build_prompt_from_text(chunk)
|
142 |
+
prompt_tokens = estimate_tokens(prompt)
|
143 |
+
if prompt_tokens > MAX_MODEL_TOKENS:
|
144 |
+
return index, f"β Chunk {index+1} prompt too long ({prompt_tokens} tokens). Skipping..."
|
145 |
+
response = ""
|
146 |
+
try:
|
147 |
+
for result in agent.run_gradio_chat(
|
148 |
+
message=prompt,
|
149 |
+
history=[],
|
150 |
+
temperature=0.2,
|
151 |
+
max_new_tokens=MAX_NEW_TOKENS,
|
152 |
+
max_token=MAX_MODEL_TOKENS,
|
153 |
+
call_agent=False,
|
154 |
+
conversation=[],
|
155 |
+
):
|
156 |
+
if isinstance(result, str):
|
157 |
+
response += result
|
158 |
+
elif hasattr(result, "content"):
|
159 |
+
response += result.content
|
160 |
+
elif isinstance(result, list):
|
161 |
+
for r in result:
|
162 |
+
if hasattr(r, "content"):
|
163 |
+
response += r.content
|
164 |
+
except Exception as e:
|
165 |
+
return index, f"β Error analyzing chunk {index+1}: {str(e)}"
|
166 |
+
return index, clean_response(response)
|
167 |
+
|
168 |
+
with ThreadPoolExecutor(max_workers=1) as executor:
|
169 |
+
futures = [executor.submit(analyze_chunk, i, chunk) for i, chunk in enumerate(chunks)]
|
170 |
+
for future in as_completed(futures):
|
171 |
+
i, result = future.result()
|
172 |
+
chunk_responses[i] = result
|
173 |
+
if not result.startswith("β"):
|
174 |
+
messages.append({"role": "assistant", "content": f"β
Chunk {i+1} analysis complete"})
|
175 |
+
else:
|
176 |
+
messages.append({"role": "assistant", "content": result})
|
177 |
+
|
178 |
+
valid_responses = [res for res in chunk_responses if not res.startswith("β")]
|
179 |
+
if not valid_responses:
|
180 |
+
messages.append({"role": "assistant", "content": "β No valid chunk responses to summarize."})
|
181 |
+
return messages, report_path
|
182 |
+
|
183 |
+
summary = ""
|
184 |
+
current_summary_tokens = 0
|
185 |
+
for i, response in enumerate(valid_responses):
|
186 |
+
response_tokens = estimate_tokens(response)
|
187 |
+
if current_summary_tokens + response_tokens > MAX_MODEL_TOKENS - PROMPT_OVERHEAD - MAX_NEW_TOKENS:
|
188 |
+
summary_prompt = f"Summarize the following analysis:\n\n{summary}\n\nProvide a concise summary."
|
189 |
+
summary_response = ""
|
190 |
+
try:
|
191 |
+
for result in agent.run_gradio_chat(
|
192 |
+
message=summary_prompt,
|
193 |
+
history=[],
|
194 |
+
temperature=0.2,
|
195 |
+
max_new_tokens=MAX_NEW_TOKENS,
|
196 |
+
max_token=MAX_MODEL_TOKENS,
|
197 |
+
call_agent=False,
|
198 |
+
conversation=[],
|
199 |
+
):
|
200 |
+
if isinstance(result, str):
|
201 |
+
summary_response += result
|
202 |
+
elif hasattr(result, "content"):
|
203 |
+
summary_response += result.content
|
204 |
+
elif isinstance(result, list):
|
205 |
+
for r in result:
|
206 |
+
if hasattr(r, "content"):
|
207 |
+
summary_response += r.content
|
208 |
+
summary = clean_response(summary_response)
|
209 |
+
current_summary_tokens = estimate_tokens(summary)
|
210 |
+
except Exception as e:
|
211 |
+
messages.append({"role": "assistant", "content": f"β Error summarizing intermediate results: {str(e)}"})
|
212 |
+
return messages, report_path
|
213 |
+
summary += f"\n\n### Chunk {i+1} Analysis\n{response}"
|
214 |
+
current_summary_tokens += response_tokens
|
215 |
+
|
216 |
+
final_prompt = f"Summarize the key findings from the following analyses:\n\n{summary}"
|
217 |
+
messages.append({"role": "assistant", "content": "π Generating final report..."})
|
218 |
+
|
219 |
+
final_report_text = ""
|
220 |
+
try:
|
221 |
+
for result in agent.run_gradio_chat(
|
222 |
+
message=final_prompt,
|
223 |
+
history=[],
|
224 |
+
temperature=0.2,
|
225 |
+
max_new_tokens=MAX_NEW_TOKENS,
|
226 |
+
max_token=MAX_MODEL_TOKENS,
|
227 |
+
call_agent=False,
|
228 |
+
conversation=[],
|
229 |
+
):
|
230 |
+
if isinstance(result, str):
|
231 |
+
final_report_text += result
|
232 |
+
elif hasattr(result, "content"):
|
233 |
+
final_report_text += result.content
|
234 |
+
elif isinstance(result, list):
|
235 |
+
for r in result:
|
236 |
+
if hasattr(r, "content"):
|
237 |
+
final_report_text += r.content
|
238 |
+
except Exception as e:
|
239 |
+
messages.append({"role": "assistant", "content": f"β Error generating final report: {str(e)}"})
|
240 |
+
return messages, report_path
|
241 |
+
|
242 |
+
final_report = f"# π§ Final Patient Report\n\n{clean_response(final_report_text)}"
|
243 |
+
messages[-1]["content"] = f"π Final Report:\n\n{clean_response(final_report_text)}"
|
244 |
+
|
245 |
+
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
|
246 |
+
report_path = os.path.join(report_dir, f"report_{timestamp}.md")
|
247 |
+
|
248 |
+
with open(report_path, 'w') as f:
|
249 |
+
f.write(final_report)
|
250 |
+
|
251 |
+
messages.append({"role": "assistant", "content": f"β
Report generated and saved: report_{timestamp}.md"})
|
252 |
+
|
253 |
+
except Exception as e:
|
254 |
+
messages.append({"role": "assistant", "content": f"β Error processing file: {str(e)}"})
|
255 |
+
|
256 |
+
return messages, report_path
|
257 |
|
258 |
def create_ui(agent):
|
259 |
+
with gr.Blocks(
|
260 |
+
title="Patient History Chat",
|
261 |
+
css="""
|
|
|
|
|
|
|
|
|
|
|
262 |
.gradio-container {
|
263 |
+
max-width: 900px !important;
|
264 |
+
margin: auto;
|
265 |
+
font-family: 'Segoe UI', sans-serif;
|
266 |
+
background-color: #f8f9fa;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
}
|
268 |
+
.gr-button.primary {
|
269 |
+
background: linear-gradient(to right, #4b6cb7, #182848);
|
270 |
color: white;
|
|
|
271 |
border: none;
|
|
|
272 |
border-radius: 8px;
|
|
|
273 |
}
|
274 |
+
.gr-button.primary:hover {
|
275 |
+
background: linear-gradient(to right, #3552a3, #101a3e);
|
276 |
}
|
277 |
+
.gr-file-upload, .gr-chatbot, .gr-markdown {
|
278 |
+
background-color: white;
|
279 |
+
border-radius: 10px;
|
280 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
281 |
+
padding: 1rem;
|
282 |
+
}
|
283 |
+
.gr-chatbot {
|
284 |
+
border-left: 4px solid #4b6cb7;
|
285 |
+
}
|
286 |
+
.gr-file-upload input {
|
287 |
+
font-size: 0.95rem;
|
288 |
+
}
|
289 |
+
.chat-message-content p {
|
290 |
+
margin: 0.3em 0;
|
291 |
+
}
|
292 |
+
.chat-message-content ul {
|
293 |
+
padding-left: 1.2em;
|
294 |
+
margin: 0.4em 0;
|
295 |
+
}
|
296 |
+
"""
|
297 |
+
) as demo:
|
298 |
+
gr.Markdown("""
|
299 |
+
<h2 style='color:#182848'>π₯ Patient History Analysis Tool</h2>
|
300 |
+
<p style='color:#444;'>Upload an Excel file containing clinical data. The assistant will analyze it for patterns, inconsistencies, and recommendations.</p>
|
301 |
+
""")
|
302 |
+
|
303 |
+
with gr.Row():
|
304 |
+
with gr.Column(scale=3):
|
305 |
+
chatbot = gr.Chatbot(
|
306 |
+
label="Clinical Assistant",
|
307 |
+
show_copy_button=True,
|
308 |
+
height=600,
|
309 |
+
type="messages",
|
310 |
+
avatar_images=(None, "https://i.imgur.com/6wX7Zb4.png"),
|
311 |
+
render_markdown=True
|
312 |
+
)
|
313 |
+
with gr.Column(scale=1):
|
314 |
+
file_upload = gr.File(label="Upload Excel File", file_types=[".xlsx"], height=100)
|
315 |
+
analyze_btn = gr.Button("π§ Analyze Patient History", variant="primary", elem_classes="primary")
|
316 |
+
report_output = gr.File(label="Download Report", visible=False, interactive=False)
|
317 |
+
|
318 |
+
chatbot_state = gr.State(value=[])
|
319 |
+
|
320 |
+
def update_ui(file, current_state):
|
321 |
+
messages, report_path = process_final_report(agent, file, current_state)
|
322 |
+
formatted_messages = []
|
323 |
+
for msg in messages:
|
324 |
+
role = msg.get("role")
|
325 |
+
content = msg.get("content", "")
|
326 |
+
if role == "assistant":
|
327 |
+
content = content.replace("- ", "\n- ")
|
328 |
+
content = f"<div class='chat-message-content'>{content}</div>"
|
329 |
+
formatted_messages.append({"role": role, "content": content})
|
330 |
+
report_update = gr.update(visible=report_path is not None, value=report_path)
|
331 |
+
return formatted_messages, report_update, formatted_messages
|
332 |
+
|
333 |
+
analyze_btn.click(fn=update_ui, inputs=[file_upload, chatbot_state], outputs=[chatbot, report_output, chatbot_state], api_name="analyze")
|
334 |
|
335 |
return demo
|
336 |
|
|
|
338 |
try:
|
339 |
agent = init_agent()
|
340 |
demo = create_ui(agent)
|
341 |
+
demo.launch(server_name="0.0.0.0", server_port=7860, show_error=True, allowed_paths=["/data/hf_cache/reports"], share=False)
|
342 |
except Exception as e:
|
343 |
print(f"Error: {str(e)}")
|
344 |
+
sys.exit(1)
|