Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,14 @@
|
|
1 |
import sys
|
2 |
import os
|
3 |
import pandas as pd
|
|
|
4 |
import gradio as gr
|
5 |
-
from typing import List, Tuple, Dict, Any, Union
|
|
|
6 |
import shutil
|
7 |
import re
|
8 |
from datetime import datetime
|
9 |
import time
|
10 |
-
import asyncio
|
11 |
-
import logging
|
12 |
-
from concurrent.futures import ThreadPoolExecutor, as_completed
|
13 |
|
14 |
# Configuration and setup
|
15 |
persistent_dir = "/data/hf_cache"
|
@@ -24,6 +23,7 @@ for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
|
|
24 |
os.makedirs(directory, exist_ok=True)
|
25 |
|
26 |
os.environ["HF_HOME"] = model_cache_dir
|
|
|
27 |
|
28 |
current_dir = os.path.dirname(os.path.abspath(__file__))
|
29 |
src_path = os.path.abspath(os.path.join(current_dir, "src"))
|
@@ -32,15 +32,10 @@ sys.path.insert(0, src_path)
|
|
32 |
from txagent.txagent import TxAgent
|
33 |
|
34 |
# Constants
|
35 |
-
MAX_MODEL_TOKENS =
|
36 |
-
MAX_CHUNK_TOKENS =
|
37 |
-
MAX_NEW_TOKENS =
|
38 |
-
PROMPT_OVERHEAD = 500
|
39 |
-
MAX_CONCURRENT = 4 # Reduced concurrency to avoid vLLM issues
|
40 |
-
|
41 |
-
# Setup logging
|
42 |
-
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
43 |
-
logger = logging.getLogger(__name__)
|
44 |
|
45 |
def clean_response(text: str) -> str:
|
46 |
try:
|
@@ -53,9 +48,11 @@ def clean_response(text: str) -> str:
|
|
53 |
return text.strip()
|
54 |
|
55 |
def estimate_tokens(text: str) -> int:
|
56 |
-
|
|
|
57 |
|
58 |
def extract_text_from_excel(file_path: str) -> str:
|
|
|
59 |
all_text = []
|
60 |
try:
|
61 |
xls = pd.ExcelFile(file_path)
|
@@ -66,16 +63,18 @@ def extract_text_from_excel(file_path: str) -> str:
|
|
66 |
sheet_text = [f"[{sheet_name}] {line}" for line in rows]
|
67 |
all_text.extend(sheet_text)
|
68 |
except Exception as e:
|
69 |
-
|
70 |
-
raise ValueError(f"Failed to process Excel file: {str(e)}")
|
71 |
return "\n".join(all_text)
|
72 |
|
73 |
-
def split_text_into_chunks(text: str) -> List[str]:
|
74 |
-
"""
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
79 |
lines = text.split("\n")
|
80 |
chunks = []
|
81 |
current_chunk = []
|
@@ -83,8 +82,8 @@ def split_text_into_chunks(text: str) -> List[str]:
|
|
83 |
|
84 |
for line in lines:
|
85 |
line_tokens = estimate_tokens(line)
|
86 |
-
if current_tokens + line_tokens >
|
87 |
-
if current_chunk:
|
88 |
chunks.append("\n".join(current_chunk))
|
89 |
current_chunk = [line]
|
90 |
current_tokens = line_tokens
|
@@ -94,11 +93,11 @@ def split_text_into_chunks(text: str) -> List[str]:
|
|
94 |
|
95 |
if current_chunk:
|
96 |
chunks.append("\n".join(current_chunk))
|
97 |
-
|
98 |
-
logger.info(f"Split text into {len(chunks)} chunks")
|
99 |
return chunks
|
100 |
|
101 |
def build_prompt_from_text(chunk: str) -> str:
|
|
|
102 |
return f"""
|
103 |
### Unstructured Clinical Records
|
104 |
|
@@ -110,7 +109,7 @@ Here is the extracted content chunk:
|
|
110 |
|
111 |
{chunk}
|
112 |
|
113 |
-
Please analyze the above and provide
|
114 |
- Diagnostic Patterns
|
115 |
- Medication Issues
|
116 |
- Missed Opportunities
|
@@ -119,7 +118,7 @@ Please analyze the above and provide concise responses (max {MAX_NEW_TOKENS} tok
|
|
119 |
"""
|
120 |
|
121 |
def init_agent():
|
122 |
-
"""Initialize TxAgent with
|
123 |
default_tool_path = os.path.abspath("data/new_tool.json")
|
124 |
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
|
125 |
|
@@ -139,168 +138,205 @@ def init_agent():
|
|
139 |
agent.init_model()
|
140 |
return agent
|
141 |
|
142 |
-
def
|
143 |
-
"""
|
144 |
-
|
145 |
-
prompt = build_prompt_from_text(chunk)
|
146 |
-
prompt_tokens = estimate_tokens(prompt)
|
147 |
-
|
148 |
-
if prompt_tokens > MAX_MODEL_TOKENS:
|
149 |
-
logger.warning(f"Chunk {chunk_idx} prompt too long ({prompt_tokens} tokens)")
|
150 |
-
return chunk_idx, ""
|
151 |
-
|
152 |
-
response = ""
|
153 |
-
for result in agent.run_gradio_chat(
|
154 |
-
message=prompt,
|
155 |
-
history=[],
|
156 |
-
temperature=0.2,
|
157 |
-
max_new_tokens=MAX_NEW_TOKENS,
|
158 |
-
max_token=MAX_MODEL_TOKENS,
|
159 |
-
call_agent=False,
|
160 |
-
conversation=[],
|
161 |
-
):
|
162 |
-
if isinstance(result, str):
|
163 |
-
response += result
|
164 |
-
elif hasattr(result, "content"):
|
165 |
-
response += result.content
|
166 |
-
elif isinstance(result, list):
|
167 |
-
for r in result:
|
168 |
-
if hasattr(r, "content"):
|
169 |
-
response += r.content
|
170 |
-
|
171 |
-
return chunk_idx, clean_response(response)
|
172 |
-
except Exception as e:
|
173 |
-
logger.error(f"Error processing chunk {chunk_idx}: {str(e)}")
|
174 |
-
return chunk_idx, ""
|
175 |
-
|
176 |
-
async def process_file(agent: TxAgent, file_path: str) -> Generator[Tuple[List[Dict[str, str]], Union[str, None]], None, None]:
|
177 |
-
messages = []
|
178 |
report_path = None
|
179 |
-
|
180 |
-
if
|
181 |
messages.append({"role": "assistant", "content": "β Please upload a valid Excel file before analyzing."})
|
182 |
-
|
183 |
-
return
|
184 |
|
185 |
try:
|
186 |
-
|
187 |
-
messages.append({"role": "
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
start_time = time.time()
|
193 |
-
text = extract_text_from_excel(file_path)
|
194 |
-
chunks = split_text_into_chunks(text)
|
195 |
-
messages.append({"role": "assistant", "content": f"β
Extracted {len(chunks)} chunks in {time.time()-start_time:.1f}s"})
|
196 |
-
yield messages, None
|
197 |
-
|
198 |
-
# Process chunks sequentially
|
199 |
chunk_responses = []
|
200 |
-
|
201 |
-
|
202 |
-
|
|
|
203 |
|
204 |
-
|
205 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
messages.append({"role": "assistant", "content": "π Generating final report..."})
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
messages
|
235 |
-
|
236 |
-
|
237 |
-
#
|
238 |
-
|
|
|
|
|
239 |
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
|
240 |
report_path = os.path.join(report_dir, f"report_{timestamp}.md")
|
241 |
|
242 |
with open(report_path, 'w') as f:
|
243 |
f.write(final_report)
|
244 |
-
|
245 |
-
messages.append({"role": "assistant", "content": f"β
Report saved: report_{timestamp}.md"})
|
246 |
-
|
247 |
-
|
248 |
except Exception as e:
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
|
|
256 |
|
257 |
with gr.Row():
|
258 |
with gr.Column(scale=3):
|
259 |
chatbot = gr.Chatbot(
|
260 |
-
label="
|
261 |
show_copy_button=True,
|
262 |
height=600,
|
263 |
-
type="messages"
|
|
|
|
|
|
|
|
|
264 |
)
|
265 |
with gr.Column(scale=1):
|
266 |
-
|
267 |
label="Upload Excel File",
|
268 |
file_types=[".xlsx"],
|
269 |
height=100
|
270 |
)
|
271 |
analyze_btn = gr.Button(
|
272 |
-
"π§ Analyze
|
273 |
variant="primary"
|
274 |
)
|
275 |
report_output = gr.File(
|
276 |
label="Download Report",
|
277 |
-
visible=False
|
|
|
278 |
)
|
279 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
280 |
analyze_btn.click(
|
281 |
-
fn=
|
282 |
-
inputs=[
|
283 |
-
outputs=[chatbot, report_output],
|
284 |
-
|
285 |
)
|
286 |
-
|
287 |
return demo
|
288 |
|
289 |
if __name__ == "__main__":
|
290 |
try:
|
291 |
-
# Initialize with conservative settings
|
292 |
agent = init_agent()
|
293 |
demo = create_ui(agent)
|
294 |
-
|
295 |
-
# Launch with stability optimizations
|
296 |
demo.launch(
|
297 |
server_name="0.0.0.0",
|
298 |
server_port=7860,
|
299 |
show_error=True,
|
300 |
-
allowed_paths=[
|
301 |
-
share=False
|
302 |
-
max_threads=4 # Reduced thread count for stability
|
303 |
)
|
304 |
except Exception as e:
|
305 |
-
|
306 |
sys.exit(1)
|
|
|
1 |
import sys
|
2 |
import os
|
3 |
import pandas as pd
|
4 |
+
import json
|
5 |
import gradio as gr
|
6 |
+
from typing import List, Tuple, Dict, Any, Union
|
7 |
+
import hashlib
|
8 |
import shutil
|
9 |
import re
|
10 |
from datetime import datetime
|
11 |
import time
|
|
|
|
|
|
|
12 |
|
13 |
# Configuration and setup
|
14 |
persistent_dir = "/data/hf_cache"
|
|
|
23 |
os.makedirs(directory, exist_ok=True)
|
24 |
|
25 |
os.environ["HF_HOME"] = model_cache_dir
|
26 |
+
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
|
27 |
|
28 |
current_dir = os.path.dirname(os.path.abspath(__file__))
|
29 |
src_path = os.path.abspath(os.path.join(current_dir, "src"))
|
|
|
32 |
from txagent.txagent import TxAgent
|
33 |
|
34 |
# Constants
|
35 |
+
MAX_MODEL_TOKENS = 32768 # Model's maximum sequence length
|
36 |
+
MAX_CHUNK_TOKENS = 8192 # Chunk size aligned with max_num_batched_tokens
|
37 |
+
MAX_NEW_TOKENS = 2048 # Maximum tokens for generation
|
38 |
+
PROMPT_OVERHEAD = 500 # Estimated tokens for prompt template overhead
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
def clean_response(text: str) -> str:
|
41 |
try:
|
|
|
48 |
return text.strip()
|
49 |
|
50 |
def estimate_tokens(text: str) -> int:
|
51 |
+
"""Estimate the number of tokens based on character length."""
|
52 |
+
return len(text) // 3.5 + 1 # Add 1 to avoid zero estimates
|
53 |
|
54 |
def extract_text_from_excel(file_path: str) -> str:
|
55 |
+
"""Extract text from all sheets in an Excel file."""
|
56 |
all_text = []
|
57 |
try:
|
58 |
xls = pd.ExcelFile(file_path)
|
|
|
63 |
sheet_text = [f"[{sheet_name}] {line}" for line in rows]
|
64 |
all_text.extend(sheet_text)
|
65 |
except Exception as e:
|
66 |
+
raise ValueError(f"Failed to extract text from Excel file: {str(e)}")
|
|
|
67 |
return "\n".join(all_text)
|
68 |
|
69 |
+
def split_text_into_chunks(text: str, max_tokens: int = MAX_CHUNK_TOKENS) -> List[str]:
|
70 |
+
"""
|
71 |
+
Split text into chunks, ensuring each chunk is within token limits,
|
72 |
+
accounting for prompt overhead.
|
73 |
+
"""
|
74 |
+
effective_max_tokens = max_tokens - PROMPT_OVERHEAD
|
75 |
+
if effective_max_tokens <= 0:
|
76 |
+
raise ValueError(f"Effective max tokens ({effective_max_tokens}) must be positive.")
|
77 |
+
|
78 |
lines = text.split("\n")
|
79 |
chunks = []
|
80 |
current_chunk = []
|
|
|
82 |
|
83 |
for line in lines:
|
84 |
line_tokens = estimate_tokens(line)
|
85 |
+
if current_tokens + line_tokens > effective_max_tokens:
|
86 |
+
if current_chunk: # Save the current chunk if it's not empty
|
87 |
chunks.append("\n".join(current_chunk))
|
88 |
current_chunk = [line]
|
89 |
current_tokens = line_tokens
|
|
|
93 |
|
94 |
if current_chunk:
|
95 |
chunks.append("\n".join(current_chunk))
|
96 |
+
|
|
|
97 |
return chunks
|
98 |
|
99 |
def build_prompt_from_text(chunk: str) -> str:
|
100 |
+
"""Build a prompt for analyzing a chunk of clinical data."""
|
101 |
return f"""
|
102 |
### Unstructured Clinical Records
|
103 |
|
|
|
109 |
|
110 |
{chunk}
|
111 |
|
112 |
+
Please analyze the above and provide:
|
113 |
- Diagnostic Patterns
|
114 |
- Medication Issues
|
115 |
- Missed Opportunities
|
|
|
118 |
"""
|
119 |
|
120 |
def init_agent():
|
121 |
+
"""Initialize the TxAgent with model and tool configurations."""
|
122 |
default_tool_path = os.path.abspath("data/new_tool.json")
|
123 |
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
|
124 |
|
|
|
138 |
agent.init_model()
|
139 |
return agent
|
140 |
|
141 |
+
def process_final_report(agent, file, chatbot_state: List[Dict[str, str]]) -> Tuple[List[Dict[str, str]], Union[str, None]]:
|
142 |
+
"""Process the Excel file and generate a final report."""
|
143 |
+
messages = chatbot_state if chatbot_state else []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
report_path = None
|
145 |
+
|
146 |
+
if file is None or not hasattr(file, "name"):
|
147 |
messages.append({"role": "assistant", "content": "β Please upload a valid Excel file before analyzing."})
|
148 |
+
return messages, report_path
|
|
|
149 |
|
150 |
try:
|
151 |
+
messages.append({"role": "user", "content": f"Processing Excel file: {os.path.basename(file.name)}"})
|
152 |
+
messages.append({"role": "assistant", "content": "β³ Extracting and analyzing data..."})
|
153 |
+
|
154 |
+
# Extract text and split into chunks
|
155 |
+
extracted_text = extract_text_from_excel(file.name)
|
156 |
+
chunks = split_text_into_chunks(extracted_text, max_tokens=MAX_CHUNK_TOKENS)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
chunk_responses = []
|
158 |
+
|
159 |
+
# Process each chunk
|
160 |
+
for i, chunk in enumerate(chunks):
|
161 |
+
messages.append({"role": "assistant", "content": f"π Analyzing chunk {i+1}/{len(chunks)}..."})
|
162 |
|
163 |
+
prompt = build_prompt_from_text(chunk)
|
164 |
+
prompt_tokens = estimate_tokens(prompt)
|
165 |
+
if prompt_tokens > MAX_MODEL_TOKENS:
|
166 |
+
messages.append({"role": "assistant", "content": f"β Chunk {i+1} prompt too long ({prompt_tokens} tokens). Skipping..."})
|
167 |
+
continue
|
168 |
+
|
169 |
+
response = ""
|
170 |
+
try:
|
171 |
+
for result in agent.run_gradio_chat(
|
172 |
+
message=prompt,
|
173 |
+
history=[],
|
174 |
+
temperature=0.2,
|
175 |
+
max_new_tokens=MAX_NEW_TOKENS,
|
176 |
+
max_token=MAX_MODEL_TOKENS,
|
177 |
+
call_agent=False,
|
178 |
+
conversation=[],
|
179 |
+
):
|
180 |
+
if isinstance(result, str):
|
181 |
+
response += result
|
182 |
+
elif hasattr(result, "content"):
|
183 |
+
response += result.content
|
184 |
+
elif isinstance(result, list):
|
185 |
+
for r in result:
|
186 |
+
if hasattr(r, "content"):
|
187 |
+
response += r.content
|
188 |
+
except Exception as e:
|
189 |
+
messages.append({"role": "assistant", "content": f"β Error analyzing chunk {i+1}: {str(e)}"})
|
190 |
+
continue
|
191 |
|
192 |
+
chunk_responses.append(clean_response(response))
|
193 |
+
messages.append({"role": "assistant", "content": f"β
Chunk {i+1} analysis complete"})
|
194 |
+
|
195 |
+
if not chunk_responses:
|
196 |
+
messages.append({"role": "assistant", "content": "β No valid chunk responses to summarize."})
|
197 |
+
return messages, report_path
|
198 |
+
|
199 |
+
# Summarize chunk responses incrementally to avoid token limit
|
200 |
+
summary = ""
|
201 |
+
current_summary_tokens = 0
|
202 |
+
for i, response in enumerate(chunk_responses):
|
203 |
+
response_tokens = estimate_tokens(response)
|
204 |
+
if current_summary_tokens + response_tokens > MAX_MODEL_TOKENS - PROMPT_OVERHEAD - MAX_NEW_TOKENS:
|
205 |
+
# Summarize current summary
|
206 |
+
summary_prompt = f"Summarize the following analysis:\n\n{summary}\n\nProvide a concise summary."
|
207 |
+
summary_response = ""
|
208 |
+
try:
|
209 |
+
for result in agent.run_gradio_chat(
|
210 |
+
message=summary_prompt,
|
211 |
+
history=[],
|
212 |
+
temperature=0.2,
|
213 |
+
max_new_tokens=MAX_NEW_TOKENS,
|
214 |
+
max_token=MAX_MODEL_TOKENS,
|
215 |
+
call_agent=False,
|
216 |
+
conversation=[],
|
217 |
+
):
|
218 |
+
if isinstance(result, str):
|
219 |
+
summary_response += result
|
220 |
+
elif hasattr(result, "content"):
|
221 |
+
summary_response += result.content
|
222 |
+
elif isinstance(result, list):
|
223 |
+
for r in result:
|
224 |
+
if hasattr(r, "content"):
|
225 |
+
summary_response += r.content
|
226 |
+
summary = clean_response(summary_response)
|
227 |
+
current_summary_tokens = estimate_tokens(summary)
|
228 |
+
except Exception as e:
|
229 |
+
messages.append({"role": "assistant", "content": f"β Error summarizing intermediate results: {str(e)}"})
|
230 |
+
return messages, report_path
|
231 |
+
|
232 |
+
summary += f"\n\n### Chunk {i+1} Analysis\n{response}"
|
233 |
+
current_summary_tokens += response_tokens
|
234 |
+
|
235 |
+
# Final summarization
|
236 |
+
final_prompt = f"Summarize the key findings from the following analyses:\n\n{summary}"
|
237 |
messages.append({"role": "assistant", "content": "π Generating final report..."})
|
238 |
+
|
239 |
+
final_report_text = ""
|
240 |
+
try:
|
241 |
+
for result in agent.run_gradio_chat(
|
242 |
+
message=final_prompt,
|
243 |
+
history=[],
|
244 |
+
temperature=0.2,
|
245 |
+
max_new_tokens=MAX_NEW_TOKENS,
|
246 |
+
max_token=MAX_MODEL_TOKENS,
|
247 |
+
call_agent=False,
|
248 |
+
conversation=[],
|
249 |
+
):
|
250 |
+
if isinstance(result, str):
|
251 |
+
final_report_text += result
|
252 |
+
elif hasattr(result, "content"):
|
253 |
+
final_report_text += result.content
|
254 |
+
elif isinstance(result, list):
|
255 |
+
for r in result:
|
256 |
+
if hasattr(r, "content"):
|
257 |
+
final_report_text += r.content
|
258 |
+
except Exception as e:
|
259 |
+
messages.append({"role": "assistant", "content": f"β Error generating final report: {str(e)}"})
|
260 |
+
return messages, report_path
|
261 |
+
|
262 |
+
final_report = f"# \U0001f9e0 Final Patient Report\n\n{clean_response(final_report_text)}"
|
263 |
+
messages[-1]["content"] = f"π Final Report:\n\n{clean_response(final_report_text)}"
|
264 |
+
|
265 |
+
# Save the report
|
266 |
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
|
267 |
report_path = os.path.join(report_dir, f"report_{timestamp}.md")
|
268 |
|
269 |
with open(report_path, 'w') as f:
|
270 |
f.write(final_report)
|
271 |
+
|
272 |
+
messages.append({"role": "assistant", "content": f"β
Report generated and saved: report_{timestamp}.md"})
|
273 |
+
|
|
|
274 |
except Exception as e:
|
275 |
+
messages.append({"role": "assistant", "content": f"β Error processing file: {str(e)}"})
|
276 |
+
|
277 |
+
return messages, report_path
|
278 |
+
|
279 |
+
def create_ui(agent):
|
280 |
+
"""Create the Gradio UI for the patient history analysis tool."""
|
281 |
+
with gr.Blocks(title="Patient History Chat", css=".gradio-container {max-width: 900px !important}") as demo:
|
282 |
+
gr.Markdown("## π₯ Patient History Analysis Tool")
|
283 |
|
284 |
with gr.Row():
|
285 |
with gr.Column(scale=3):
|
286 |
chatbot = gr.Chatbot(
|
287 |
+
label="Clinical Assistant",
|
288 |
show_copy_button=True,
|
289 |
height=600,
|
290 |
+
type="messages",
|
291 |
+
avatar_images=(
|
292 |
+
None,
|
293 |
+
"https://i.imgur.com/6wX7Zb4.png"
|
294 |
+
)
|
295 |
)
|
296 |
with gr.Column(scale=1):
|
297 |
+
file_upload = gr.File(
|
298 |
label="Upload Excel File",
|
299 |
file_types=[".xlsx"],
|
300 |
height=100
|
301 |
)
|
302 |
analyze_btn = gr.Button(
|
303 |
+
"π§ Analyze Patient History",
|
304 |
variant="primary"
|
305 |
)
|
306 |
report_output = gr.File(
|
307 |
label="Download Report",
|
308 |
+
visible=False,
|
309 |
+
interactive=False
|
310 |
)
|
311 |
+
|
312 |
+
# State to maintain chatbot messages
|
313 |
+
chatbot_state = gr.State(value=[])
|
314 |
+
|
315 |
+
def update_ui(file, current_state):
|
316 |
+
messages, report_path = process_final_report(agent, file, current_state)
|
317 |
+
report_update = gr.update(visible=report_path is not None, value=report_path)
|
318 |
+
return messages, report_update, messages
|
319 |
+
|
320 |
analyze_btn.click(
|
321 |
+
fn=update_ui,
|
322 |
+
inputs=[file_upload, chatbot_state],
|
323 |
+
outputs=[chatbot, report_output, chatbot_state],
|
324 |
+
api_name="analyze"
|
325 |
)
|
326 |
+
|
327 |
return demo
|
328 |
|
329 |
if __name__ == "__main__":
|
330 |
try:
|
|
|
331 |
agent = init_agent()
|
332 |
demo = create_ui(agent)
|
|
|
|
|
333 |
demo.launch(
|
334 |
server_name="0.0.0.0",
|
335 |
server_port=7860,
|
336 |
show_error=True,
|
337 |
+
allowed_paths=["/data/hf_cache/reports"],
|
338 |
+
share=False
|
|
|
339 |
)
|
340 |
except Exception as e:
|
341 |
+
print(f"Error: {str(e)}")
|
342 |
sys.exit(1)
|