Update app.py
Browse files
app.py
CHANGED
@@ -1,112 +1,559 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
try:
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
-
|
36 |
-
#
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
51 |
|
52 |
-
file_hash_value = file_hash(files[0].name) if files else ""
|
53 |
-
history.append({"role": "assistant", "content": "✅ File processing complete"})
|
54 |
outputs.update({
|
55 |
-
"
|
56 |
-
"
|
|
|
57 |
})
|
58 |
yield outputs
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
combined_response = ""
|
64 |
-
|
65 |
-
for chunk_idx, chunk in enumerate(chunks, 1):
|
66 |
-
prompt = f"""Analyze this patient record for missed diagnoses...""" # Your prompt here
|
67 |
-
|
68 |
-
history.append({"role": "assistant", "content": ""})
|
69 |
outputs.update({
|
70 |
"chatbot": history,
|
71 |
-
"
|
|
|
72 |
})
|
73 |
yield outputs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
"chatbot": history,
|
82 |
-
"progress_text": update_progress(chunk_idx, len(chunks), "Analyzing")
|
83 |
-
})
|
84 |
-
yield outputs
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
f.write(combined_response + "\n\n" + summary)
|
96 |
-
|
97 |
-
outputs.update({
|
98 |
-
"download_output": report_path if report_path else None,
|
99 |
-
"final_summary": summary,
|
100 |
-
"progress_text": {"visible": False}
|
101 |
-
})
|
102 |
-
yield outputs
|
103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
except Exception as e:
|
105 |
-
logger.error("
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
"progress_text": {"visible": False}
|
111 |
-
})
|
112 |
-
yield outputs
|
|
|
1 |
+
import sys
|
2 |
+
import os
|
3 |
+
import pandas as pd
|
4 |
+
import pdfplumber
|
5 |
+
import json
|
6 |
+
import gradio as gr
|
7 |
+
from typing import List, Dict, Generator, Any
|
8 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
9 |
+
import hashlib
|
10 |
+
import shutil
|
11 |
+
import re
|
12 |
+
import psutil
|
13 |
+
import subprocess
|
14 |
+
import logging
|
15 |
+
import torch
|
16 |
+
import gc
|
17 |
+
from diskcache import Cache
|
18 |
+
from transformers import AutoTokenizer
|
19 |
+
|
20 |
+
# ==================== CONFIGURATION ====================
|
21 |
+
# Configure logging
|
22 |
+
logging.basicConfig(level=logging.INFO)
|
23 |
+
logger = logging.getLogger(__name__)
|
24 |
+
|
25 |
+
# Setup directories
|
26 |
+
PERSISTENT_DIR = "/data/hf_cache"
|
27 |
+
DIRECTORIES = {
|
28 |
+
"models": os.path.join(PERSISTENT_DIR, "txagent_models"),
|
29 |
+
"tools": os.path.join(PERSISTENT_DIR, "tool_cache"),
|
30 |
+
"cache": os.path.join(PERSISTENT_DIR, "cache"),
|
31 |
+
"reports": os.path.join(PERSISTENT_DIR, "reports"),
|
32 |
+
"vllm": os.path.join(PERSISTENT_DIR, "vllm_cache")
|
33 |
+
}
|
34 |
+
|
35 |
+
# Create directories
|
36 |
+
for dir_path in DIRECTORIES.values():
|
37 |
+
os.makedirs(dir_path, exist_ok=True)
|
38 |
+
|
39 |
+
# Environment variables
|
40 |
+
os.environ.update({
|
41 |
+
"HF_HOME": DIRECTORIES["models"],
|
42 |
+
"TRANSFORMERS_CACHE": DIRECTORIES["models"],
|
43 |
+
"VLLM_CACHE_DIR": DIRECTORIES["vllm"],
|
44 |
+
"TOKENIZERS_PARALLELISM": "false",
|
45 |
+
"CUDA_LAUNCH_BLOCKING": "1"
|
46 |
+
})
|
47 |
+
|
48 |
+
# ==================== UTILITY FUNCTIONS ====================
|
49 |
+
def sanitize_text(text: str) -> str:
|
50 |
+
"""Clean and sanitize text input"""
|
51 |
+
return text.encode("utf-8", "ignore").decode("utf-8")
|
52 |
+
|
53 |
+
def get_file_hash(file_path: str) -> str:
|
54 |
+
"""Generate MD5 hash of file content"""
|
55 |
+
with open(file_path, "rb") as f:
|
56 |
+
return hashlib.md5(f.read()).hexdigest()
|
57 |
+
|
58 |
+
def log_system_resources(tag: str = "") -> None:
|
59 |
+
"""Log system resource usage"""
|
60 |
try:
|
61 |
+
cpu = psutil.cpu_percent(interval=1)
|
62 |
+
mem = psutil.virtual_memory()
|
63 |
+
logger.info(f"[{tag}] CPU: {cpu:.1f}% | RAM: {mem.used//(1024**2)}MB/{mem.total//(1024**2)}MB")
|
64 |
+
|
65 |
+
gpu_info = subprocess.run(
|
66 |
+
["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu",
|
67 |
+
"--format=csv,nounits,noheader"],
|
68 |
+
capture_output=True, text=True
|
69 |
+
)
|
70 |
+
if gpu_info.returncode == 0:
|
71 |
+
used, total, util = gpu_info.stdout.strip().split(", ")
|
72 |
+
logger.info(f"[{tag}] GPU: {used}MB/{total}MB | Util: {util}%")
|
73 |
+
except Exception as e:
|
74 |
+
logger.error(f"[{tag}] Resource monitoring failed: {e}")
|
75 |
+
|
76 |
+
# ==================== FILE PROCESSING ====================
|
77 |
+
class FileProcessor:
|
78 |
+
@staticmethod
|
79 |
+
def extract_pdf_text(file_path: str) -> str:
|
80 |
+
"""Extract text from PDF with parallel processing"""
|
81 |
+
try:
|
82 |
+
with pdfplumber.open(file_path) as pdf:
|
83 |
+
total_pages = len(pdf.pages)
|
84 |
+
if not total_pages:
|
85 |
+
return ""
|
86 |
+
|
87 |
+
def process_page_range(start: int, end: int) -> List[tuple]:
|
88 |
+
results = []
|
89 |
+
with pdfplumber.open(file_path) as pdf:
|
90 |
+
for page in pdf.pages[start:end]:
|
91 |
+
page_num = start + pdf.pages.index(page)
|
92 |
+
text = page.extract_text() or ""
|
93 |
+
results.append((page_num, f"=== Page {page_num + 1} ===\n{text.strip()}"))
|
94 |
+
return results
|
95 |
+
|
96 |
+
batch_size = 10
|
97 |
+
batches = [(i, min(i+batch_size, total_pages)) for i in range(0, total_pages, batch_size)]
|
98 |
+
text_chunks = [""] * total_pages
|
99 |
+
|
100 |
+
with ThreadPoolExecutor(max_workers=6) as executor:
|
101 |
+
futures = [executor.submit(process_page_range, start, end) for start, end in batches]
|
102 |
+
for future in as_completed(futures):
|
103 |
+
for page_num, text in future.result():
|
104 |
+
text_chunks[page_num] = text
|
105 |
+
|
106 |
+
return "\n\n".join(filter(None, text_chunks))
|
107 |
+
except Exception as e:
|
108 |
+
logger.error(f"PDF processing error: {e}")
|
109 |
+
return f"PDF processing error: {str(e)}"
|
110 |
+
|
111 |
+
@staticmethod
|
112 |
+
def excel_to_data(file_path: str) -> List[Dict]:
|
113 |
+
"""Convert Excel file to structured data"""
|
114 |
+
try:
|
115 |
+
df = pd.read_excel(file_path, engine='openpyxl', header=None, dtype=str)
|
116 |
+
content = df.where(pd.notnull(df), "").astype(str).values.tolist()
|
117 |
+
return [{"filename": os.path.basename(file_path), "rows": content, "type": "excel"}]
|
118 |
+
except Exception as e:
|
119 |
+
logger.error(f"Excel processing error: {e}")
|
120 |
+
return [{"error": f"Excel processing error: {str(e)}"}]
|
121 |
+
|
122 |
+
@staticmethod
|
123 |
+
def csv_to_data(file_path: str) -> List[Dict]:
|
124 |
+
"""Convert CSV file to structured data"""
|
125 |
+
try:
|
126 |
+
chunks = []
|
127 |
+
for chunk in pd.read_csv(
|
128 |
+
file_path, header=None, dtype=str,
|
129 |
+
encoding_errors='replace', on_bad_lines='skip', chunksize=10000
|
130 |
+
):
|
131 |
+
chunks.append(chunk)
|
132 |
+
|
133 |
+
df = pd.concat(chunks) if chunks else pd.DataFrame()
|
134 |
+
content = df.where(pd.notnull(df), "").astype(str).values.tolist()
|
135 |
+
return [{"filename": os.path.basename(file_path), "rows": content, "type": "csv"}]
|
136 |
+
except Exception as e:
|
137 |
+
logger.error(f"CSV processing error: {e}")
|
138 |
+
return [{"error": f"CSV processing error: {str(e)}"}]
|
139 |
+
|
140 |
+
@classmethod
|
141 |
+
def process_file(cls, file_path: str, file_type: str) -> List[Dict]:
|
142 |
+
"""Route file processing based on type"""
|
143 |
+
processors = {
|
144 |
+
"pdf": cls.extract_pdf_text,
|
145 |
+
"xls": cls.excel_to_data,
|
146 |
+
"xlsx": cls.excel_to_data,
|
147 |
+
"csv": cls.csv_to_data
|
148 |
+
}
|
149 |
+
|
150 |
+
if file_type not in processors:
|
151 |
+
return [{"error": f"Unsupported file type: {file_type}"}]
|
152 |
|
153 |
+
try:
|
154 |
+
result = processors[file_type](file_path)
|
155 |
+
if file_type == "pdf":
|
156 |
+
return [{
|
157 |
+
"filename": os.path.basename(file_path),
|
158 |
+
"content": result,
|
159 |
+
"status": "initial",
|
160 |
+
"type": "pdf"
|
161 |
+
}]
|
162 |
+
return result
|
163 |
+
except Exception as e:
|
164 |
+
logger.error(f"Error processing {file_type} file: {e}")
|
165 |
+
return [{"error": f"Error processing file: {str(e)}"}]
|
166 |
+
|
167 |
+
# ==================== TEXT PROCESSING ====================
|
168 |
+
class TextProcessor:
|
169 |
+
def __init__(self):
|
170 |
+
self.tokenizer = AutoTokenizer.from_pretrained("mims-harvard/TxAgent-T1-Llama-3.1-8B")
|
171 |
+
self.cache = Cache(DIRECTORIES["cache"], size_limit=10*1024**3)
|
172 |
+
|
173 |
+
def chunk_text(self, text: str, max_tokens: int = 1800) -> List[str]:
|
174 |
+
"""Split text into token-limited chunks"""
|
175 |
+
tokens = self.tokenizer.encode(text)
|
176 |
+
return [
|
177 |
+
self.tokenizer.decode(tokens[i:i+max_tokens])
|
178 |
+
for i in range(0, len(tokens), max_tokens)
|
179 |
+
]
|
180 |
+
|
181 |
+
def clean_response(self, text: str) -> str:
|
182 |
+
"""Clean and format model response"""
|
183 |
+
text = sanitize_text(text)
|
184 |
+
text = re.sub(
|
185 |
+
r"\[.*?\]|\bNone\b|To analyze the patient record excerpt.*?medications\."
|
186 |
+
r"|Since the previous attempts.*?\.|I need to.*?medications\."
|
187 |
+
r"|Retrieving tools.*?\.", "", text, flags=re.DOTALL
|
188 |
+
)
|
189 |
+
|
190 |
+
diagnoses = []
|
191 |
+
in_diagnoses = False
|
192 |
+
|
193 |
+
for line in text.splitlines():
|
194 |
+
line = line.strip()
|
195 |
+
if not line:
|
196 |
+
continue
|
197 |
+
if re.match(r"###\s*Missed Diagnoses", line):
|
198 |
+
in_diagnoses = True
|
199 |
+
continue
|
200 |
+
if re.match(r"###\s*(Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line):
|
201 |
+
in_diagnoses = False
|
202 |
+
continue
|
203 |
+
if in_diagnoses and re.match(r"-\s*.+", line):
|
204 |
+
diagnosis = re.sub(r"^\-\s*", "", line).strip()
|
205 |
+
if diagnosis and not re.match(r"No issues identified", diagnosis, re.IGNORECASE):
|
206 |
+
diagnoses.append(diagnosis)
|
207 |
+
|
208 |
+
return " ".join(diagnoses) if diagnoses else ""
|
209 |
+
|
210 |
+
def summarize_results(self, analysis: str) -> str:
|
211 |
+
"""Generate concise summary from full analysis"""
|
212 |
+
chunks = analysis.split("--- Analysis for Chunk")
|
213 |
+
diagnoses = []
|
214 |
+
|
215 |
+
for chunk in chunks:
|
216 |
+
chunk = chunk.strip()
|
217 |
+
if not chunk or "No oversights identified" in chunk:
|
218 |
+
continue
|
219 |
+
|
220 |
+
in_diagnoses = False
|
221 |
+
for line in chunk.splitlines():
|
222 |
+
line = line.strip()
|
223 |
+
if not line:
|
224 |
+
continue
|
225 |
+
if re.match(r"###\s*Missed Diagnoses", line):
|
226 |
+
in_diagnoses = True
|
227 |
+
continue
|
228 |
+
if re.match(r"###\s*(Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line):
|
229 |
+
in_diagnoses = False
|
230 |
+
continue
|
231 |
+
if in_diagnoses and re.match(r"-\s*.+", line):
|
232 |
+
diagnosis = re.sub(r"^\-\s*", "", line).strip()
|
233 |
+
if diagnosis and not re.match(r"No issues identified", diagnosis, re.IGNORECASE):
|
234 |
+
diagnoses.append(diagnosis)
|
235 |
+
|
236 |
+
unique_diagnoses = list(dict.fromkeys(diagnoses)) # Remove duplicates
|
237 |
+
|
238 |
+
if not unique_diagnoses:
|
239 |
+
return "No missed diagnoses were identified in the provided records."
|
240 |
+
|
241 |
+
if len(unique_diagnoses) > 1:
|
242 |
+
summary = "Missed diagnoses include " + ", ".join(unique_diagnoses[:-1])
|
243 |
+
summary += f", and {unique_diagnoses[-1]}"
|
244 |
+
else:
|
245 |
+
summary = "Missed diagnoses include " + unique_diagnoses[0]
|
246 |
+
|
247 |
+
return summary + ", all requiring urgent clinical review."
|
248 |
+
|
249 |
+
# ==================== CORE APPLICATION ====================
|
250 |
+
class ClinicalOversightApp:
|
251 |
+
def __init__(self):
|
252 |
+
self.agent = self._initialize_agent()
|
253 |
+
self.text_processor = TextProcessor()
|
254 |
+
self.file_processor = FileProcessor()
|
255 |
+
|
256 |
+
def _initialize_agent(self):
|
257 |
+
"""Initialize the TxAgent with proper configuration"""
|
258 |
+
logger.info("Initializing AI model...")
|
259 |
+
log_system_resources("Before Load")
|
260 |
+
|
261 |
+
tool_path = os.path.join(DIRECTORIES["tools"], "new_tool.json")
|
262 |
+
if not os.path.exists(tool_path):
|
263 |
+
default_tools = os.path.abspath("data/new_tool.json")
|
264 |
+
shutil.copy(default_tools, tool_path)
|
265 |
+
|
266 |
+
agent = TxAgent(
|
267 |
+
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
|
268 |
+
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
|
269 |
+
tool_files_dict={"new_tool": tool_path},
|
270 |
+
force_finish=True,
|
271 |
+
enable_checker=False,
|
272 |
+
step_rag_num=4,
|
273 |
+
seed=100,
|
274 |
+
additional_default_tools=[],
|
275 |
+
)
|
276 |
+
agent.init_model()
|
277 |
+
|
278 |
+
log_system_resources("After Load")
|
279 |
+
logger.info("AI Agent Ready")
|
280 |
+
return agent
|
281 |
+
|
282 |
+
def process_response_stream(self, prompt: str, history: List[dict]) -> Generator[dict, None, None]:
|
283 |
+
"""Stream the agent's response with proper formatting"""
|
284 |
+
full_response = ""
|
285 |
+
for chunk in self.agent.run_gradio_chat(prompt, [], 0.2, 512, 2048, False, []):
|
286 |
+
if not chunk:
|
287 |
+
continue
|
288 |
+
|
289 |
+
if isinstance(chunk, list):
|
290 |
+
for message in chunk:
|
291 |
+
if hasattr(message, 'content') and message.content:
|
292 |
+
cleaned = self.text_processor.clean_response(message.content)
|
293 |
+
if cleaned:
|
294 |
+
full_response += cleaned + " "
|
295 |
+
yield {"role": "assistant", "content": full_response}
|
296 |
+
elif isinstance(chunk, str) and chunk.strip():
|
297 |
+
cleaned = self.text_processor.clean_response(chunk)
|
298 |
+
if cleaned:
|
299 |
+
full_response += cleaned + " "
|
300 |
+
yield {"role": "assistant", "content": full_response}
|
301 |
+
|
302 |
+
def analyze(self, message: str, history: List[dict], files: List) -> Generator[Dict[str, Any], None, None]:
|
303 |
+
"""Main analysis pipeline with proper output formatting"""
|
304 |
+
# Initialize all output components
|
305 |
+
outputs = {
|
306 |
+
"chatbot": history.copy(),
|
307 |
+
"download_output": None,
|
308 |
+
"final_summary": "",
|
309 |
+
"progress_text": {"value": "Starting analysis...", "visible": True}
|
310 |
+
}
|
311 |
+
yield outputs
|
312 |
|
313 |
+
try:
|
314 |
+
# Add user message to history
|
315 |
+
history.append({"role": "user", "content": message})
|
316 |
+
outputs["chatbot"] = history
|
317 |
+
yield outputs
|
318 |
+
|
319 |
+
# Process uploaded files
|
320 |
+
extracted = []
|
321 |
+
file_hash_value = ""
|
322 |
+
|
323 |
+
if files:
|
324 |
+
with ThreadPoolExecutor(max_workers=4) as executor:
|
325 |
+
futures = []
|
326 |
+
for f in files:
|
327 |
+
file_type = f.name.split(".")[-1].lower()
|
328 |
+
futures.append(executor.submit(self.file_processor.process_file, f.name, file_type))
|
329 |
+
|
330 |
+
for i, future in enumerate(as_completed(futures), 1):
|
331 |
+
try:
|
332 |
+
extracted.extend(future.result())
|
333 |
+
outputs["progress_text"] = self._update_progress(i, len(files), "Processing files")
|
334 |
+
yield outputs
|
335 |
+
except Exception as e:
|
336 |
+
logger.error(f"File processing error: {e}")
|
337 |
+
extracted.append({"error": f"Error processing file: {str(e)}"})
|
338 |
+
|
339 |
+
file_hash_value = get_file_hash(files[0].name) if files else ""
|
340 |
+
history.append({"role": "assistant", "content": "✅ File processing complete"})
|
341 |
+
outputs.update({
|
342 |
+
"chatbot": history,
|
343 |
+
"progress_text": self._update_progress(len(files), len(files), "Files processed")
|
344 |
+
})
|
345 |
+
yield outputs
|
346 |
+
|
347 |
+
# Analyze content
|
348 |
+
text_content = "\n".join(json.dumps(item) for item in extracted)
|
349 |
+
chunks = self.text_processor.chunk_text(text_content)
|
350 |
+
combined_response = ""
|
351 |
+
|
352 |
+
for chunk_idx, chunk in enumerate(chunks, 1):
|
353 |
+
prompt = f"""
|
354 |
+
Analyze this patient record for missed diagnoses. Provide a concise, evidence-based summary
|
355 |
+
as a single paragraph without headings or bullet points. Include specific clinical findings
|
356 |
+
with their potential implications and urgent review recommendations. If no missed diagnoses
|
357 |
+
are found, state 'No missed diagnoses identified'.
|
358 |
+
|
359 |
+
Patient Record (Chunk {chunk_idx}/{len(chunks)}):
|
360 |
+
{chunk[:1800]}
|
361 |
+
"""
|
362 |
+
history.append({"role": "assistant", "content": ""})
|
363 |
+
outputs.update({
|
364 |
+
"chatbot": history,
|
365 |
+
"progress_text": self._update_progress(chunk_idx, len(chunks), "Analyzing")
|
366 |
+
})
|
367 |
+
yield outputs
|
368 |
+
|
369 |
+
# Stream response
|
370 |
+
chunk_response = ""
|
371 |
+
for update in self.process_response_stream(prompt, history):
|
372 |
+
history[-1] = update
|
373 |
+
chunk_response = update["content"]
|
374 |
+
outputs.update({
|
375 |
+
"chatbot": history,
|
376 |
+
"progress_text": self._update_progress(chunk_idx, len(chunks), "Analyzing")
|
377 |
+
})
|
378 |
+
yield outputs
|
379 |
|
380 |
+
combined_response += f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response}\n"
|
381 |
+
torch.cuda.empty_cache()
|
382 |
+
gc.collect()
|
383 |
+
|
384 |
+
# Generate final outputs
|
385 |
+
summary = self.text_processor.summarize_results(combined_response)
|
386 |
+
report_path = os.path.join(DIRECTORIES["reports"], f"{file_hash_value}_report.txt") if file_hash_value else None
|
387 |
+
|
388 |
+
if report_path:
|
389 |
+
with open(report_path, "w", encoding="utf-8") as f:
|
390 |
+
f.write(combined_response + "\n\n" + summary)
|
391 |
|
|
|
|
|
392 |
outputs.update({
|
393 |
+
"download_output": report_path if report_path else None,
|
394 |
+
"final_summary": summary,
|
395 |
+
"progress_text": {"visible": False}
|
396 |
})
|
397 |
yield outputs
|
398 |
|
399 |
+
except Exception as e:
|
400 |
+
logger.error(f"Analysis error: {e}")
|
401 |
+
history.append({"role": "assistant", "content": f"❌ Error: {str(e)}"})
|
|
|
|
|
|
|
|
|
|
|
|
|
402 |
outputs.update({
|
403 |
"chatbot": history,
|
404 |
+
"final_summary": f"Error occurred: {str(e)}",
|
405 |
+
"progress_text": {"visible": False}
|
406 |
})
|
407 |
yield outputs
|
408 |
+
|
409 |
+
def _update_progress(self, current: int, total: int, stage: str = "") -> Dict[str, Any]:
|
410 |
+
"""Format progress update for UI"""
|
411 |
+
progress = f"{stage} - {current}/{total}" if stage else f"{current}/{total}"
|
412 |
+
return {"value": progress, "visible": True, "label": f"Progress: {progress}"}
|
413 |
+
|
414 |
+
def create_interface(self):
|
415 |
+
"""Create Gradio interface with improved layout"""
|
416 |
+
with gr.Blocks(
|
417 |
+
theme=gr.themes.Soft(
|
418 |
+
primary_hue="indigo",
|
419 |
+
secondary_hue="blue",
|
420 |
+
neutral_hue="slate"
|
421 |
+
),
|
422 |
+
title="Clinical Oversight Assistant",
|
423 |
+
css="""
|
424 |
+
.diagnosis-summary {
|
425 |
+
border-left: 4px solid #4f46e5;
|
426 |
+
padding: 12px;
|
427 |
+
background: #f8fafc;
|
428 |
+
border-radius: 4px;
|
429 |
+
}
|
430 |
+
.file-upload {
|
431 |
+
border: 2px dashed #cbd5e1;
|
432 |
+
border-radius: 8px;
|
433 |
+
padding: 20px;
|
434 |
+
}
|
435 |
+
"""
|
436 |
+
) as app:
|
437 |
+
# Header Section
|
438 |
+
gr.Markdown("""
|
439 |
+
<div style='text-align: center; margin-bottom: 20px;'>
|
440 |
+
<h1 style='color: #4f46e5;'>🩺 Clinical Oversight Assistant</h1>
|
441 |
+
<p style='color: #64748b;'>
|
442 |
+
AI-powered analysis of patient records for potential missed diagnoses
|
443 |
+
</p>
|
444 |
+
</div>
|
445 |
+
""")
|
446 |
+
|
447 |
+
with gr.Row(equal_height=False):
|
448 |
+
# Main Chat Column
|
449 |
+
with gr.Column(scale=3):
|
450 |
+
chatbot = gr.Chatbot(
|
451 |
+
label="Clinical Analysis",
|
452 |
+
height=600,
|
453 |
+
show_copy_button=True,
|
454 |
+
avatar_images=(
|
455 |
+
"assets/user.png",
|
456 |
+
"assets/assistant.png"
|
457 |
+
) if os.path.exists("assets/user.png") else None,
|
458 |
+
bubble_full_width=False,
|
459 |
+
type="messages",
|
460 |
+
elem_classes=["chat-container"]
|
461 |
+
)
|
462 |
+
|
463 |
+
# Results Column
|
464 |
+
with gr.Column(scale=1):
|
465 |
+
with gr.Group():
|
466 |
+
gr.Markdown("### 📝 Summary of Findings")
|
467 |
+
final_summary = gr.Markdown(
|
468 |
+
"Analysis results will appear here...",
|
469 |
+
elem_classes=["diagnosis-summary"]
|
470 |
+
)
|
471 |
+
|
472 |
+
with gr.Group():
|
473 |
+
gr.Markdown("### 📂 Report Download")
|
474 |
+
download_output = gr.File(
|
475 |
+
label="Full Report",
|
476 |
+
visible=False,
|
477 |
+
interactive=False
|
478 |
+
)
|
479 |
+
|
480 |
+
# Input Section
|
481 |
+
with gr.Row():
|
482 |
+
file_upload = gr.File(
|
483 |
+
file_types=[".pdf", ".csv", ".xls", ".xlsx"],
|
484 |
+
file_count="multiple",
|
485 |
+
label="Upload Patient Records",
|
486 |
+
elem_classes=["file-upload"]
|
487 |
+
)
|
488 |
+
|
489 |
+
# Interaction Section
|
490 |
+
with gr.Row():
|
491 |
+
msg_input = gr.Textbox(
|
492 |
+
placeholder="Ask about potential oversights or upload files...",
|
493 |
+
show_label=False,
|
494 |
+
container=False,
|
495 |
+
scale=7,
|
496 |
+
autofocus=True
|
497 |
+
)
|
498 |
+
send_btn = gr.Button(
|
499 |
+
"Analyze",
|
500 |
+
variant="primary",
|
501 |
+
scale=1,
|
502 |
+
min_width=100
|
503 |
+
)
|
504 |
+
|
505 |
+
# Progress Indicator
|
506 |
+
progress_text = gr.Textbox(
|
507 |
+
label="Progress Status",
|
508 |
+
visible=False,
|
509 |
+
interactive=False
|
510 |
+
)
|
511 |
+
|
512 |
+
# Event Handlers
|
513 |
+
send_btn.click(
|
514 |
+
self.analyze,
|
515 |
+
inputs=[msg_input, chatbot, file_upload],
|
516 |
+
outputs=[chatbot, download_output, final_summary, progress_text],
|
517 |
+
show_progress="hidden"
|
518 |
+
)
|
519 |
|
520 |
+
msg_input.submit(
|
521 |
+
self.analyze,
|
522 |
+
inputs=[msg_input, chatbot, file_upload],
|
523 |
+
outputs=[chatbot, download_output, final_summary, progress_text],
|
524 |
+
show_progress="hidden"
|
525 |
+
)
|
|
|
|
|
|
|
|
|
526 |
|
527 |
+
app.load(
|
528 |
+
lambda: [
|
529 |
+
[], None, "", "", None, {"visible": False}
|
530 |
+
],
|
531 |
+
outputs=[chatbot, download_output, final_summary, msg_input, file_upload, progress_text],
|
532 |
+
queue=False
|
533 |
+
)
|
534 |
+
|
535 |
+
return app
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
536 |
|
537 |
+
# ==================== APPLICATION ENTRY POINT ====================
|
538 |
+
if __name__ == "__main__":
|
539 |
+
try:
|
540 |
+
logger.info("Starting Clinical Oversight Assistant...")
|
541 |
+
app = ClinicalOversightApp()
|
542 |
+
interface = app.create_interface()
|
543 |
+
|
544 |
+
interface.queue(
|
545 |
+
api_open=False,
|
546 |
+
max_size=20
|
547 |
+
).launch(
|
548 |
+
server_name="0.0.0.0",
|
549 |
+
server_port=7860,
|
550 |
+
show_error=True,
|
551 |
+
allowed_paths=[DIRECTORIES["reports"]],
|
552 |
+
share=False
|
553 |
+
)
|
554 |
except Exception as e:
|
555 |
+
logger.error(f"Application failed to start: {e}")
|
556 |
+
raise
|
557 |
+
finally:
|
558 |
+
if torch.distributed.is_initialized():
|
559 |
+
torch.distributed.destroy_process_group()
|
|
|
|
|
|