Update app.py
Browse files
app.py
CHANGED
@@ -1,309 +1,33 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
# Persistent directory
|
26 |
-
persistent_dir = "/data/hf_cache"
|
27 |
-
os.makedirs(persistent_dir, exist_ok=True)
|
28 |
-
|
29 |
-
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
|
30 |
-
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
|
31 |
-
file_cache_dir = os.path.join(persistent_dir, "cache")
|
32 |
-
report_dir = os.path.join(persistent_dir, "reports")
|
33 |
-
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache")
|
34 |
-
|
35 |
-
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
|
36 |
-
os.makedirs(directory, exist_ok=True)
|
37 |
-
|
38 |
-
os.environ["HF_HOME"] = model_cache_dir
|
39 |
-
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
|
40 |
-
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir
|
41 |
-
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
42 |
-
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
|
43 |
-
|
44 |
-
current_dir = os.path.dirname(os.path.abspath(__file__))
|
45 |
-
src_path = os.path.abspath(os.path.join(current_dir, "src"))
|
46 |
-
sys.path.insert(0, src_path)
|
47 |
-
|
48 |
-
from txagent.txagent import TxAgent
|
49 |
-
|
50 |
-
# Initialize cache with 10GB limit
|
51 |
-
cache = Cache(file_cache_dir, size_limit=10 * 1024**3)
|
52 |
-
|
53 |
-
# Initialize tokenizer for precise chunking
|
54 |
-
tokenizer = AutoTokenizer.from_pretrained("mims-harvard/TxAgent-T1-Llama-3.1-8B")
|
55 |
-
|
56 |
-
def sanitize_utf8(text: str) -> str:
|
57 |
-
return text.encode("utf-8", "ignore").decode("utf-8")
|
58 |
-
|
59 |
-
def file_hash(path: str) -> str:
|
60 |
-
with open(path, "rb") as f:
|
61 |
-
return hashlib.md5(f.read()).hexdigest()
|
62 |
-
|
63 |
-
def extract_all_pages(file_path: str, progress_callback=None) -> str:
|
64 |
-
try:
|
65 |
-
with pdfplumber.open(file_path) as pdf:
|
66 |
-
total_pages = len(pdf.pages)
|
67 |
-
if total_pages == 0:
|
68 |
-
return ""
|
69 |
-
|
70 |
-
batch_size = 10
|
71 |
-
batches = [(i, min(i + batch_size, total_pages)) for i in range(0, total_pages, batch_size)]
|
72 |
-
text_chunks = [""] * total_pages
|
73 |
-
processed_pages = 0
|
74 |
-
|
75 |
-
def extract_batch(start: int, end: int) -> List[tuple]:
|
76 |
-
results = []
|
77 |
-
with pdfplumber.open(file_path) as pdf:
|
78 |
-
for page in pdf.pages[start:end]:
|
79 |
-
page_num = start + pdf.pages.index(page)
|
80 |
-
page_text = page.extract_text() or ""
|
81 |
-
results.append((page_num, f"=== Page {page_num + 1} ===\n{page_text.strip()}"))
|
82 |
-
return results
|
83 |
-
|
84 |
-
with ThreadPoolExecutor(max_workers=6) as executor:
|
85 |
-
futures = [executor.submit(extract_batch, start, end) for start, end in batches]
|
86 |
-
for future in as_completed(futures):
|
87 |
-
for page_num, text in future.result():
|
88 |
-
text_chunks[page_num] = text
|
89 |
-
processed_pages += batch_size
|
90 |
-
if progress_callback:
|
91 |
-
progress_callback(min(processed_pages, total_pages), total_pages)
|
92 |
-
|
93 |
-
return "\n\n".join(filter(None, text_chunks))
|
94 |
-
except Exception as e:
|
95 |
-
logger.error("PDF processing error: %s", e)
|
96 |
-
return f"PDF processing error: {str(e)}"
|
97 |
-
|
98 |
-
def excel_to_json(file_path: str) -> List[Dict]:
|
99 |
-
try:
|
100 |
-
try:
|
101 |
-
df = pd.read_excel(file_path, engine='openpyxl', header=None, dtype=str)
|
102 |
-
except Exception:
|
103 |
-
df = pd.read_excel(file_path, engine='xlrd', header=None, dtype=str)
|
104 |
-
|
105 |
-
content = df.where(pd.notnull(df), "").astype(str).values.tolist()
|
106 |
-
|
107 |
-
return [{
|
108 |
-
"filename": os.path.basename(file_path),
|
109 |
-
"rows": content,
|
110 |
-
"type": "excel"
|
111 |
-
}]
|
112 |
-
except Exception as e:
|
113 |
-
logger.error(f"Error processing Excel file: {e}")
|
114 |
-
return [{"error": f"Error processing Excel file: {str(e)}"}]
|
115 |
-
|
116 |
-
def csv_to_json(file_path: str) -> List[Dict]:
|
117 |
-
try:
|
118 |
-
chunks = []
|
119 |
-
for chunk in pd.read_csv(
|
120 |
-
file_path,
|
121 |
-
header=None,
|
122 |
-
dtype=str,
|
123 |
-
encoding_errors='replace',
|
124 |
-
on_bad_lines='skip',
|
125 |
-
chunksize=10000
|
126 |
-
):
|
127 |
-
chunks.append(chunk)
|
128 |
-
|
129 |
-
df = pd.concat(chunks) if chunks else pd.DataFrame()
|
130 |
-
content = df.where(pd.notnull(df), "").astype(str).values.tolist()
|
131 |
-
|
132 |
-
return [{
|
133 |
-
"filename": os.path.basename(file_path),
|
134 |
-
"rows": content,
|
135 |
-
"type": "csv"
|
136 |
-
}]
|
137 |
-
except Exception as e:
|
138 |
-
logger.error(f"Error processing CSV file: {e}")
|
139 |
-
return [{"error": f"Error processing CSV file: {str(e)}"}]
|
140 |
-
|
141 |
-
def process_file(file_path: str, file_type: str) -> List[Dict]:
|
142 |
-
try:
|
143 |
-
if file_type == "pdf":
|
144 |
-
text = extract_all_pages(file_path)
|
145 |
-
return [{
|
146 |
-
"filename": os.path.basename(file_path),
|
147 |
-
"content": text,
|
148 |
-
"status": "initial",
|
149 |
-
"type": "pdf"
|
150 |
-
}]
|
151 |
-
elif file_type in ["xls", "xlsx"]:
|
152 |
-
return excel_to_json(file_path)
|
153 |
-
elif file_type == "csv":
|
154 |
-
return csv_to_json(file_path)
|
155 |
-
else:
|
156 |
-
return [{"error": f"Unsupported file type: {file_type}"}]
|
157 |
-
except Exception as e:
|
158 |
-
logger.error("Error processing %s: %s", os.path.basename(file_path), e)
|
159 |
-
return [{"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"}]
|
160 |
-
|
161 |
-
def tokenize_and_chunk(text: str, max_tokens: int = 1800) -> List[str]:
|
162 |
-
tokens = tokenizer.encode(text)
|
163 |
-
chunks = []
|
164 |
-
for i in range(0, len(tokens), max_tokens):
|
165 |
-
chunk_tokens = tokens[i:i + max_tokens]
|
166 |
-
chunks.append(tokenizer.decode(chunk_tokens))
|
167 |
-
return chunks
|
168 |
-
|
169 |
-
def log_system_usage(tag=""):
|
170 |
-
try:
|
171 |
-
cpu = psutil.cpu_percent(interval=1)
|
172 |
-
mem = psutil.virtual_memory()
|
173 |
-
logger.info("[%s] CPU: %.1f%% | RAM: %dMB / %dMB", tag, cpu, mem.used // (1024**2), mem.total // (1024**2))
|
174 |
-
result = subprocess.run(
|
175 |
-
["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
|
176 |
-
capture_output=True, text=True
|
177 |
-
)
|
178 |
-
if result.returncode == 0:
|
179 |
-
used, total, util = result.stdout.strip().split(", ")
|
180 |
-
logger.info("[%s] GPU: %sMB / %sMB | Utilization: %s%%", tag, used, total, util)
|
181 |
-
except Exception as e:
|
182 |
-
logger.error("[%s] GPU/CPU monitor failed: %s", tag, e)
|
183 |
-
|
184 |
-
def clean_response(text: str) -> str:
|
185 |
-
text = sanitize_utf8(text)
|
186 |
-
text = re.sub(r"\[.*?\]|\bNone\b|To analyze the patient record excerpt.*?medications\.|Since the previous attempts.*?\.|I need to.*?medications\.|Retrieving tools.*?\.", "", text, flags=re.DOTALL)
|
187 |
-
diagnoses = []
|
188 |
-
lines = text.splitlines()
|
189 |
-
in_diagnoses_section = False
|
190 |
-
for line in lines:
|
191 |
-
line = line.strip()
|
192 |
-
if not line:
|
193 |
-
continue
|
194 |
-
if re.match(r"###\s*Missed Diagnoses", line):
|
195 |
-
in_diagnoses_section = True
|
196 |
-
continue
|
197 |
-
if re.match(r"###\s*(Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line):
|
198 |
-
in_diagnoses_section = False
|
199 |
-
continue
|
200 |
-
if in_diagnoses_section and re.match(r"-\s*.+", line):
|
201 |
-
diagnosis = re.sub(r"^\-\s*", "", line).strip()
|
202 |
-
if diagnosis and not re.match(r"No issues identified", diagnosis, re.IGNORECASE):
|
203 |
-
diagnoses.append(diagnosis)
|
204 |
-
text = " ".join(diagnoses)
|
205 |
-
text = re.sub(r"\s+", " ", text).strip()
|
206 |
-
text = re.sub(r"[^\w\s\.\,\(\)\-]", "", text)
|
207 |
-
return text if text else ""
|
208 |
-
|
209 |
-
def summarize_findings(combined_response: str) -> str:
|
210 |
-
chunks = combined_response.split("--- Analysis for Chunk")
|
211 |
-
diagnoses = []
|
212 |
-
for chunk in chunks:
|
213 |
-
chunk = chunk.strip()
|
214 |
-
if not chunk or "No oversights identified" in chunk:
|
215 |
-
continue
|
216 |
-
lines = chunk.splitlines()
|
217 |
-
in_diagnoses_section = False
|
218 |
-
for line in lines:
|
219 |
-
line = line.strip()
|
220 |
-
if not line:
|
221 |
-
continue
|
222 |
-
if re.match(r"###\s*Missed Diagnoses", line):
|
223 |
-
in_diagnoses_section = True
|
224 |
-
continue
|
225 |
-
if re.match(r"###\s*(Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line):
|
226 |
-
in_diagnoses_section = False
|
227 |
-
continue
|
228 |
-
if in_diagnoses_section and re.match(r"-\s*.+", line):
|
229 |
-
diagnosis = re.sub(r"^\-\s*", "", line).strip()
|
230 |
-
if diagnosis and not re.match(r"No issues identified", diagnosis, re.IGNORECASE):
|
231 |
-
diagnoses.append(diagnosis)
|
232 |
-
|
233 |
-
seen = set()
|
234 |
-
unique_diagnoses = [d for d in diagnoses if not (d in seen or seen.add(d))]
|
235 |
-
|
236 |
-
if not unique_diagnoses:
|
237 |
-
return "No missed diagnoses were identified in the provided records."
|
238 |
-
|
239 |
-
summary = "Missed diagnoses include " + ", ".join(unique_diagnoses[:-1])
|
240 |
-
if len(unique_diagnoses) > 1:
|
241 |
-
summary += f", and {unique_diagnoses[-1]}"
|
242 |
-
elif len(unique_diagnoses) == 1:
|
243 |
-
summary = "Missed diagnoses include " + unique_diagnoses[0]
|
244 |
-
summary += ", all of which require urgent clinical review to prevent potential adverse outcomes."
|
245 |
-
|
246 |
-
return summary.strip()
|
247 |
-
|
248 |
-
def update_progress(current: int, total: int, stage: str = "") -> Dict[str, Any]:
|
249 |
-
progress = f"{stage} - {current}/{total}" if stage else f"{current}/{total}"
|
250 |
-
return {"value": progress, "visible": True, "label": f"Progress: {progress}"}
|
251 |
-
|
252 |
-
def init_agent():
|
253 |
-
logger.info("Initializing model...")
|
254 |
-
log_system_usage("Before Load")
|
255 |
-
default_tool_path = os.path.abspath("data/new_tool.json")
|
256 |
-
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
|
257 |
-
if not os.path.exists(target_tool_path):
|
258 |
-
shutil.copy(default_tool_path, target_tool_path)
|
259 |
-
|
260 |
-
agent = TxAgent(
|
261 |
-
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
|
262 |
-
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
|
263 |
-
tool_files_dict={"new_tool": target_tool_path},
|
264 |
-
force_finish=True,
|
265 |
-
enable_checker=False,
|
266 |
-
step_rag_num=4,
|
267 |
-
seed=100,
|
268 |
-
additional_default_tools=[],
|
269 |
-
)
|
270 |
-
agent.init_model()
|
271 |
-
log_system_usage("After Load")
|
272 |
-
logger.info("Agent Ready")
|
273 |
-
return agent
|
274 |
-
|
275 |
-
def process_response_stream(prompt: str, history: List[dict]) -> Generator[dict, None, None]:
|
276 |
-
full_response = ""
|
277 |
-
for chunk_output in agent.run_gradio_chat(prompt, [], 0.2, 512, 2048, False, []):
|
278 |
-
if chunk_output is None:
|
279 |
-
continue
|
280 |
-
|
281 |
-
if isinstance(chunk_output, list):
|
282 |
-
for m in chunk_output:
|
283 |
-
if hasattr(m, 'content') and m.content:
|
284 |
-
cleaned = clean_response(m.content)
|
285 |
-
if cleaned:
|
286 |
-
full_response += cleaned + " "
|
287 |
-
yield {"role": "assistant", "content": full_response}
|
288 |
-
elif isinstance(chunk_output, str) and chunk_output.strip():
|
289 |
-
cleaned = clean_response(chunk_output)
|
290 |
-
if cleaned:
|
291 |
-
full_response += cleaned + " "
|
292 |
-
yield {"role": "assistant", "content": full_response}
|
293 |
-
|
294 |
-
return full_response
|
295 |
-
|
296 |
-
def analyze(message: str, history: List[dict], files: List) -> Generator[tuple, None, None]:
|
297 |
-
# Initialize outputs
|
298 |
-
chatbot_output = history.copy()
|
299 |
-
download_output = None
|
300 |
-
final_summary = ""
|
301 |
-
progress_text = {"value": "Starting analysis...", "visible": True}
|
302 |
|
303 |
try:
|
304 |
-
#
|
305 |
-
|
306 |
-
|
|
|
307 |
|
308 |
extracted = []
|
309 |
file_hash_value = ""
|
@@ -319,175 +43,70 @@ def analyze(message: str, history: List[dict], files: List) -> Generator[tuple,
|
|
319 |
for i, future in enumerate(as_completed(futures), 1):
|
320 |
try:
|
321 |
extracted.extend(future.result())
|
322 |
-
progress_text = update_progress(i, len(files), "Processing files")
|
323 |
-
yield
|
324 |
except Exception as e:
|
325 |
logger.error(f"File processing error: {e}")
|
326 |
extracted.append({"error": f"Error processing file: {str(e)}"})
|
327 |
|
328 |
file_hash_value = file_hash(files[0].name) if files else ""
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
|
|
|
|
|
|
334 |
text_content = "\n".join(json.dumps(item) for item in extracted)
|
335 |
-
|
336 |
-
# Tokenize and chunk the content properly
|
337 |
chunks = tokenize_and_chunk(text_content)
|
338 |
combined_response = ""
|
339 |
|
340 |
for chunk_idx, chunk in enumerate(chunks, 1):
|
341 |
-
prompt = f"""
|
342 |
-
Analyze the patient record excerpt for missed diagnoses only. Provide a concise, evidence-based summary as a single paragraph without headings or bullet points. Include specific clinical findings (e.g., 'elevated blood pressure (160/95) on page 10'), their potential implications (e.g., 'may indicate untreated hypertension'), and a recommendation for urgent review. Do not include other oversight categories like medication conflicts. If no missed diagnoses are found, state 'No missed diagnoses identified' in a single sentence.
|
343 |
-
|
344 |
-
Patient Record Excerpt (Chunk {chunk_idx} of {len(chunks)}):
|
345 |
-
{chunk[:1800]}
|
346 |
-
"""
|
347 |
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
|
|
|
|
352 |
|
353 |
-
# Process
|
354 |
chunk_response = ""
|
355 |
-
for update in process_response_stream(prompt,
|
356 |
-
|
357 |
chunk_response = update["content"]
|
358 |
-
|
359 |
-
|
|
|
|
|
|
|
360 |
|
361 |
combined_response += f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response}\n"
|
362 |
-
|
363 |
-
# Clean up memory
|
364 |
torch.cuda.empty_cache()
|
365 |
gc.collect()
|
366 |
|
367 |
-
#
|
368 |
-
|
369 |
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
|
370 |
if report_path:
|
371 |
with open(report_path, "w", encoding="utf-8") as f:
|
372 |
-
f.write(combined_response + "\n\n" +
|
373 |
|
374 |
-
|
375 |
-
|
376 |
-
|
|
|
|
|
|
|
377 |
|
378 |
except Exception as e:
|
379 |
logger.error("Analysis error: %s", e)
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
[], # chatbot
|
388 |
-
None, # download_output
|
389 |
-
"", # final_summary
|
390 |
-
"", # msg_input
|
391 |
-
None, # file_upload
|
392 |
-
{"visible": False} # progress_text
|
393 |
-
]
|
394 |
-
|
395 |
-
def create_ui(agent):
|
396 |
-
with gr.Blocks(theme=gr.themes.Soft(), title="Clinical Oversight Assistant") as demo:
|
397 |
-
gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
|
398 |
-
|
399 |
-
with gr.Row():
|
400 |
-
with gr.Column(scale=3):
|
401 |
-
chatbot = gr.Chatbot(
|
402 |
-
label="Analysis Conversation",
|
403 |
-
height=600,
|
404 |
-
show_copy_button=True,
|
405 |
-
avatar_images=(
|
406 |
-
"assets/user.png",
|
407 |
-
"assets/assistant.png"
|
408 |
-
) if os.path.exists("assets/user.png") else None,
|
409 |
-
type="messages", # Use openai-style messages
|
410 |
-
render=False
|
411 |
-
)
|
412 |
-
with gr.Column(scale=1):
|
413 |
-
final_summary = gr.Markdown(
|
414 |
-
label="Summary of Findings",
|
415 |
-
value="### Summary will appear here\nAfter analysis completes"
|
416 |
-
)
|
417 |
-
download_output = gr.File(
|
418 |
-
label="Download Full Report",
|
419 |
-
visible=False
|
420 |
-
)
|
421 |
-
|
422 |
-
with gr.Row():
|
423 |
-
file_upload = gr.File(
|
424 |
-
file_types=[".pdf", ".csv", ".xls", ".xlsx"],
|
425 |
-
file_count="multiple",
|
426 |
-
label="Upload Patient Records"
|
427 |
-
)
|
428 |
-
|
429 |
-
with gr.Row():
|
430 |
-
msg_input = gr.Textbox(
|
431 |
-
placeholder="Ask about potential oversights...",
|
432 |
-
show_label=False,
|
433 |
-
container=False,
|
434 |
-
scale=7,
|
435 |
-
autofocus=True
|
436 |
-
)
|
437 |
-
send_btn = gr.Button(
|
438 |
-
"Analyze",
|
439 |
-
variant="primary",
|
440 |
-
scale=1,
|
441 |
-
min_width=100
|
442 |
-
)
|
443 |
-
|
444 |
-
progress_text = gr.Textbox(
|
445 |
-
label="Progress",
|
446 |
-
visible=False,
|
447 |
-
interactive=False
|
448 |
-
)
|
449 |
-
|
450 |
-
# Event handlers
|
451 |
-
send_btn.click(
|
452 |
-
analyze,
|
453 |
-
inputs=[msg_input, chatbot, file_upload],
|
454 |
-
outputs=[chatbot, download_output, final_summary, progress_text],
|
455 |
-
show_progress="hidden"
|
456 |
-
)
|
457 |
-
|
458 |
-
msg_input.submit(
|
459 |
-
analyze,
|
460 |
-
inputs=[msg_input, chatbot, file_upload],
|
461 |
-
outputs=[chatbot, download_output, final_summary, progress_text],
|
462 |
-
show_progress="hidden"
|
463 |
-
)
|
464 |
-
|
465 |
-
demo.load(
|
466 |
-
clear_and_start,
|
467 |
-
outputs=[chatbot, download_output, final_summary, msg_input, file_upload, progress_text],
|
468 |
-
queue=False
|
469 |
-
)
|
470 |
-
|
471 |
-
return demo
|
472 |
-
|
473 |
-
if __name__ == "__main__":
|
474 |
-
try:
|
475 |
-
logger.info("Launching app...")
|
476 |
-
agent = init_agent()
|
477 |
-
demo = create_ui(agent)
|
478 |
-
demo.queue(
|
479 |
-
api_open=False,
|
480 |
-
max_size=20
|
481 |
-
).launch(
|
482 |
-
server_name="0.0.0.0",
|
483 |
-
server_port=7860,
|
484 |
-
show_error=True,
|
485 |
-
allowed_paths=[report_dir],
|
486 |
-
share=False
|
487 |
-
)
|
488 |
-
except Exception as e:
|
489 |
-
logger.error(f"Failed to launch app: {e}")
|
490 |
-
raise
|
491 |
-
finally:
|
492 |
-
if torch.distributed.is_initialized():
|
493 |
-
torch.distributed.destroy_process_group()
|
|
|
1 |
+
# Update the Chatbot component in create_ui() to use the new message format:
|
2 |
+
chatbot = gr.Chatbot(
|
3 |
+
label="Analysis Conversation",
|
4 |
+
height=600,
|
5 |
+
show_copy_button=True,
|
6 |
+
avatar_images=(
|
7 |
+
"assets/user.png",
|
8 |
+
"assets/assistant.png"
|
9 |
+
) if os.path.exists("assets/user.png") else None,
|
10 |
+
render=False,
|
11 |
+
bubble_full_width=False,
|
12 |
+
type="messages" # Add this line to use the new format
|
13 |
+
)
|
14 |
+
|
15 |
+
# Update the analyze function to properly return all outputs:
|
16 |
+
def analyze(message: str, history: List[dict], files: List) -> Generator[Dict[str, Any], None, None]:
|
17 |
+
# Initialize all outputs
|
18 |
+
outputs = {
|
19 |
+
"chatbot": history.copy(),
|
20 |
+
"download_output": None,
|
21 |
+
"final_summary": "",
|
22 |
+
"progress_text": {"value": "Starting analysis...", "visible": True}
|
23 |
+
}
|
24 |
+
yield outputs # First yield with all outputs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
try:
|
27 |
+
# Add user message to history
|
28 |
+
history.append({"role": "user", "content": message})
|
29 |
+
outputs["chatbot"] = history
|
30 |
+
yield outputs
|
31 |
|
32 |
extracted = []
|
33 |
file_hash_value = ""
|
|
|
43 |
for i, future in enumerate(as_completed(futures), 1):
|
44 |
try:
|
45 |
extracted.extend(future.result())
|
46 |
+
outputs["progress_text"] = update_progress(i, len(files), "Processing files")
|
47 |
+
yield outputs
|
48 |
except Exception as e:
|
49 |
logger.error(f"File processing error: {e}")
|
50 |
extracted.append({"error": f"Error processing file: {str(e)}"})
|
51 |
|
52 |
file_hash_value = file_hash(files[0].name) if files else ""
|
53 |
+
history.append({"role": "assistant", "content": "✅ File processing complete"})
|
54 |
+
outputs.update({
|
55 |
+
"chatbot": history,
|
56 |
+
"progress_text": update_progress(len(files), len(files), "Files processed")
|
57 |
+
})
|
58 |
+
yield outputs
|
59 |
+
|
60 |
+
# Process content and generate responses
|
61 |
text_content = "\n".join(json.dumps(item) for item in extracted)
|
|
|
|
|
62 |
chunks = tokenize_and_chunk(text_content)
|
63 |
combined_response = ""
|
64 |
|
65 |
for chunk_idx, chunk in enumerate(chunks, 1):
|
66 |
+
prompt = f"""Analyze this patient record for missed diagnoses...""" # Your prompt here
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
+
history.append({"role": "assistant", "content": ""})
|
69 |
+
outputs.update({
|
70 |
+
"chatbot": history,
|
71 |
+
"progress_text": update_progress(chunk_idx, len(chunks), "Analyzing")
|
72 |
+
})
|
73 |
+
yield outputs
|
74 |
|
75 |
+
# Process response stream
|
76 |
chunk_response = ""
|
77 |
+
for update in process_response_stream(prompt, history):
|
78 |
+
history[-1] = update
|
79 |
chunk_response = update["content"]
|
80 |
+
outputs.update({
|
81 |
+
"chatbot": history,
|
82 |
+
"progress_text": update_progress(chunk_idx, len(chunks), "Analyzing")
|
83 |
+
})
|
84 |
+
yield outputs
|
85 |
|
86 |
combined_response += f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response}\n"
|
|
|
|
|
87 |
torch.cuda.empty_cache()
|
88 |
gc.collect()
|
89 |
|
90 |
+
# Final outputs
|
91 |
+
summary = summarize_findings(combined_response)
|
92 |
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
|
93 |
if report_path:
|
94 |
with open(report_path, "w", encoding="utf-8") as f:
|
95 |
+
f.write(combined_response + "\n\n" + summary)
|
96 |
|
97 |
+
outputs.update({
|
98 |
+
"download_output": report_path if report_path else None,
|
99 |
+
"final_summary": summary,
|
100 |
+
"progress_text": {"visible": False}
|
101 |
+
})
|
102 |
+
yield outputs
|
103 |
|
104 |
except Exception as e:
|
105 |
logger.error("Analysis error: %s", e)
|
106 |
+
history.append({"role": "assistant", "content": f"❌ Error: {str(e)}"})
|
107 |
+
outputs.update({
|
108 |
+
"chatbot": history,
|
109 |
+
"final_summary": f"Error occurred: {str(e)}",
|
110 |
+
"progress_text": {"visible": False}
|
111 |
+
})
|
112 |
+
yield outputs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|