Update app.py
Browse files
app.py
CHANGED
@@ -3,12 +3,9 @@ import os
|
|
3 |
import pandas as pd
|
4 |
import json
|
5 |
import gradio as gr
|
6 |
-
from typing import List, Tuple, Union, Generator, BinaryIO
|
7 |
-
import hashlib
|
8 |
-
import shutil
|
9 |
import re
|
10 |
from datetime import datetime
|
11 |
-
from concurrent.futures import ThreadPoolExecutor, as_completed
|
12 |
|
13 |
# Setup directories
|
14 |
persistent_dir = "/data/hf_cache"
|
@@ -42,22 +39,20 @@ def clean_response(text: str) -> str:
|
|
42 |
def estimate_tokens(text: str) -> int:
|
43 |
return len(text) // 3.5 + 1
|
44 |
|
45 |
-
def extract_text_from_excel(file_obj) -> str:
|
46 |
-
"""Handle
|
47 |
all_text = []
|
48 |
try:
|
49 |
-
# Handle Gradio file object
|
50 |
-
if
|
51 |
-
file_path = file_obj
|
52 |
-
|
53 |
-
elif isinstance(file_obj, (str, os.PathLike)):
|
54 |
file_path = file_obj
|
55 |
else:
|
56 |
raise ValueError("Unsupported file input type")
|
57 |
|
58 |
-
# Verify file exists
|
59 |
if not os.path.exists(file_path):
|
60 |
-
raise FileNotFoundError(f"
|
61 |
|
62 |
xls = pd.ExcelFile(file_path)
|
63 |
|
@@ -76,44 +71,41 @@ def extract_text_from_excel(file_obj) -> str:
|
|
76 |
except Exception as e:
|
77 |
raise ValueError(f"❌ Error processing Excel file: {str(e)}")
|
78 |
|
79 |
-
def split_text_into_chunks(text: str
|
80 |
-
effective_max =
|
81 |
lines, chunks, curr_chunk, curr_tokens = text.split("\n"), [], [], 0
|
82 |
for line in lines:
|
83 |
t = estimate_tokens(line)
|
84 |
if curr_tokens + t > effective_max:
|
85 |
if curr_chunk:
|
86 |
chunks.append("\n".join(curr_chunk))
|
87 |
-
if len(chunks) >= max_chunks:
|
88 |
-
break
|
89 |
curr_chunk, curr_tokens = [line], t
|
90 |
else:
|
91 |
curr_chunk.append(line)
|
92 |
curr_tokens += t
|
93 |
-
if curr_chunk
|
94 |
chunks.append("\n".join(curr_chunk))
|
95 |
return chunks
|
96 |
|
97 |
def build_prompt_from_text(chunk: str) -> str:
|
98 |
return f"""
|
99 |
-
###
|
100 |
|
101 |
-
|
102 |
-
-
|
103 |
-
-
|
104 |
-
-
|
105 |
-
-
|
106 |
-
- Follow-up Recommendations
|
107 |
|
108 |
---
|
109 |
|
110 |
{chunk}
|
111 |
|
112 |
---
|
113 |
-
|
114 |
"""
|
115 |
|
116 |
-
def init_agent():
|
117 |
tool_path = os.path.join(tool_cache_dir, "new_tool.json")
|
118 |
if not os.path.exists(tool_path):
|
119 |
default_tool = {
|
@@ -137,7 +129,7 @@ def init_agent():
|
|
137 |
agent.init_model()
|
138 |
return agent
|
139 |
|
140 |
-
def stream_report(agent, input_file, full_output: str) -> Generator[Tuple[str, Union[str, None], str], None, None]:
|
141 |
accumulated_text = ""
|
142 |
try:
|
143 |
if input_file is None:
|
@@ -146,12 +138,11 @@ def stream_report(agent, input_file, full_output: str) -> Generator[Tuple[str, U
|
|
146 |
|
147 |
try:
|
148 |
text = extract_text_from_excel(input_file)
|
|
|
149 |
except Exception as e:
|
150 |
yield f"❌ {str(e)}", None, ""
|
151 |
return
|
152 |
|
153 |
-
chunks = split_text_into_chunks(text)
|
154 |
-
|
155 |
for i, chunk in enumerate(chunks):
|
156 |
prompt = build_prompt_from_text(chunk)
|
157 |
partial = ""
|
@@ -160,87 +151,50 @@ def stream_report(agent, input_file, full_output: str) -> Generator[Tuple[str, U
|
|
160 |
max_new_tokens=MAX_NEW_TOKENS, max_token=MAX_MODEL_TOKENS,
|
161 |
call_agent=False, conversation=[]
|
162 |
):
|
163 |
-
if isinstance(res, str)
|
164 |
-
|
165 |
-
elif hasattr(res, "content"):
|
166 |
-
partial += res.content
|
167 |
cleaned = clean_response(partial)
|
168 |
-
accumulated_text += f"\n\n📄
|
169 |
yield accumulated_text, None, ""
|
170 |
|
171 |
-
summary_prompt = f"
|
172 |
final_report = ""
|
173 |
for res in agent.run_gradio_chat(
|
174 |
message=summary_prompt, history=[], temperature=0.2,
|
175 |
max_new_tokens=MAX_NEW_TOKENS, max_token=MAX_MODEL_TOKENS,
|
176 |
call_agent=False, conversation=[]
|
177 |
):
|
178 |
-
if isinstance(res, str)
|
179 |
-
final_report += res
|
180 |
-
elif hasattr(res, "content"):
|
181 |
-
final_report += res.content
|
182 |
|
183 |
cleaned = clean_response(final_report)
|
184 |
-
accumulated_text += f"\n\n📊 **Final Summary**:\n{cleaned}"
|
185 |
report_path = os.path.join(report_dir, f"report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md")
|
186 |
with open(report_path, 'w') as f:
|
187 |
-
f.write(f"#
|
188 |
|
189 |
-
yield accumulated_text, report_path, cleaned
|
190 |
|
191 |
except Exception as e:
|
192 |
-
yield f"❌
|
193 |
-
|
194 |
-
def create_ui(agent):
|
195 |
-
with gr.Blocks(css=""
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
background-color: #1a1f2e;
|
209 |
-
}
|
210 |
-
.output-markdown {
|
211 |
-
background-color: #131720;
|
212 |
-
border-radius: 12px;
|
213 |
-
padding: 20px;
|
214 |
-
min-height: 600px;
|
215 |
-
overflow-y: auto;
|
216 |
-
border: 1px solid #2c3344;
|
217 |
-
}
|
218 |
-
.gr-button {
|
219 |
-
background: linear-gradient(135deg, #4b4ced, #37b6e9);
|
220 |
-
color: white;
|
221 |
-
font-weight: 500;
|
222 |
-
border: none;
|
223 |
-
padding: 10px 20px;
|
224 |
-
border-radius: 8px;
|
225 |
-
transition: background 0.3s ease;
|
226 |
-
}
|
227 |
-
.gr-button:hover {
|
228 |
-
background: linear-gradient(135deg, #37b6e9, #4b4ced);
|
229 |
-
}
|
230 |
-
""") as demo:
|
231 |
-
gr.Markdown("""# 🧠 Clinical Reasoning Assistant
|
232 |
-
Upload clinical Excel records below and click **Analyze** to generate a medical summary.
|
233 |
-
""")
|
234 |
-
file_upload = gr.File(label="Upload Excel File", file_types=[".xlsx"])
|
235 |
-
analyze_btn = gr.Button("Analyze")
|
236 |
-
report_output_markdown = gr.Markdown(elem_classes="output-markdown")
|
237 |
-
report_file = gr.File(label="Download Report", visible=False)
|
238 |
-
full_output = gr.State(value="")
|
239 |
|
240 |
analyze_btn.click(
|
241 |
fn=stream_report,
|
242 |
inputs=[file_upload, full_output],
|
243 |
-
outputs=[
|
244 |
)
|
245 |
|
246 |
return demo
|
@@ -250,12 +204,10 @@ if __name__ == "__main__":
|
|
250 |
agent = init_agent()
|
251 |
demo = create_ui(agent)
|
252 |
demo.launch(
|
253 |
-
server_name="0.0.0.0",
|
254 |
-
server_port=7860,
|
255 |
-
|
256 |
-
share=True,
|
257 |
-
show_error=True
|
258 |
)
|
259 |
except Exception as e:
|
260 |
-
print(f"
|
261 |
sys.exit(1)
|
|
|
3 |
import pandas as pd
|
4 |
import json
|
5 |
import gradio as gr
|
6 |
+
from typing import List, Tuple, Union, Generator, BinaryIO, Dict, Any
|
|
|
|
|
7 |
import re
|
8 |
from datetime import datetime
|
|
|
9 |
|
10 |
# Setup directories
|
11 |
persistent_dir = "/data/hf_cache"
|
|
|
39 |
def estimate_tokens(text: str) -> int:
|
40 |
return len(text) // 3.5 + 1
|
41 |
|
42 |
+
def extract_text_from_excel(file_obj: Union[str, Dict[str, Any]]) -> str:
|
43 |
+
"""Handle Gradio file upload object which is a dictionary with 'name' and other keys"""
|
44 |
all_text = []
|
45 |
try:
|
46 |
+
# Handle Gradio file upload object
|
47 |
+
if isinstance(file_obj, dict) and 'name' in file_obj:
|
48 |
+
file_path = file_obj['name']
|
49 |
+
elif isinstance(file_obj, str):
|
|
|
50 |
file_path = file_obj
|
51 |
else:
|
52 |
raise ValueError("Unsupported file input type")
|
53 |
|
|
|
54 |
if not os.path.exists(file_path):
|
55 |
+
raise FileNotFoundError(f"Temporary upload file not found at: {file_path}")
|
56 |
|
57 |
xls = pd.ExcelFile(file_path)
|
58 |
|
|
|
71 |
except Exception as e:
|
72 |
raise ValueError(f"❌ Error processing Excel file: {str(e)}")
|
73 |
|
74 |
+
def split_text_into_chunks(text: str) -> List[str]:
|
75 |
+
effective_max = MAX_CHUNK_TOKENS - PROMPT_OVERHEAD
|
76 |
lines, chunks, curr_chunk, curr_tokens = text.split("\n"), [], [], 0
|
77 |
for line in lines:
|
78 |
t = estimate_tokens(line)
|
79 |
if curr_tokens + t > effective_max:
|
80 |
if curr_chunk:
|
81 |
chunks.append("\n".join(curr_chunk))
|
|
|
|
|
82 |
curr_chunk, curr_tokens = [line], t
|
83 |
else:
|
84 |
curr_chunk.append(line)
|
85 |
curr_tokens += t
|
86 |
+
if curr_chunk:
|
87 |
chunks.append("\n".join(curr_chunk))
|
88 |
return chunks
|
89 |
|
90 |
def build_prompt_from_text(chunk: str) -> str:
|
91 |
return f"""
|
92 |
+
### Clinical Records Analysis
|
93 |
|
94 |
+
Please analyze these clinical notes and provide:
|
95 |
+
- Key diagnostic indicators
|
96 |
+
- Current medications and potential issues
|
97 |
+
- Recommended follow-up actions
|
98 |
+
- Any inconsistencies or concerns
|
|
|
99 |
|
100 |
---
|
101 |
|
102 |
{chunk}
|
103 |
|
104 |
---
|
105 |
+
Provide a structured response with clear medical reasoning.
|
106 |
"""
|
107 |
|
108 |
+
def init_agent() -> TxAgent:
|
109 |
tool_path = os.path.join(tool_cache_dir, "new_tool.json")
|
110 |
if not os.path.exists(tool_path):
|
111 |
default_tool = {
|
|
|
129 |
agent.init_model()
|
130 |
return agent
|
131 |
|
132 |
+
def stream_report(agent: TxAgent, input_file: Union[str, Dict[str, Any]], full_output: str) -> Generator[Tuple[str, Union[str, None], str], None, None]:
|
133 |
accumulated_text = ""
|
134 |
try:
|
135 |
if input_file is None:
|
|
|
138 |
|
139 |
try:
|
140 |
text = extract_text_from_excel(input_file)
|
141 |
+
chunks = split_text_into_chunks(text)
|
142 |
except Exception as e:
|
143 |
yield f"❌ {str(e)}", None, ""
|
144 |
return
|
145 |
|
|
|
|
|
146 |
for i, chunk in enumerate(chunks):
|
147 |
prompt = build_prompt_from_text(chunk)
|
148 |
partial = ""
|
|
|
151 |
max_new_tokens=MAX_NEW_TOKENS, max_token=MAX_MODEL_TOKENS,
|
152 |
call_agent=False, conversation=[]
|
153 |
):
|
154 |
+
partial += res if isinstance(res, str) else res.content
|
155 |
+
|
|
|
|
|
156 |
cleaned = clean_response(partial)
|
157 |
+
accumulated_text += f"\n\n📄 Analysis Part {i+1}:\n{cleaned}"
|
158 |
yield accumulated_text, None, ""
|
159 |
|
160 |
+
summary_prompt = f"Please summarize this analysis:\n\n{accumulated_text}"
|
161 |
final_report = ""
|
162 |
for res in agent.run_gradio_chat(
|
163 |
message=summary_prompt, history=[], temperature=0.2,
|
164 |
max_new_tokens=MAX_NEW_TOKENS, max_token=MAX_MODEL_TOKENS,
|
165 |
call_agent=False, conversation=[]
|
166 |
):
|
167 |
+
final_report += res if isinstance(res, str) else res.content
|
|
|
|
|
|
|
168 |
|
169 |
cleaned = clean_response(final_report)
|
|
|
170 |
report_path = os.path.join(report_dir, f"report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md")
|
171 |
with open(report_path, 'w') as f:
|
172 |
+
f.write(f"# Clinical Analysis Report\n\n{cleaned}")
|
173 |
|
174 |
+
yield f"{accumulated_text}\n\n📊 Final Summary:\n{cleaned}", report_path, cleaned
|
175 |
|
176 |
except Exception as e:
|
177 |
+
yield f"❌ Processing error: {str(e)}", None, ""
|
178 |
+
|
179 |
+
def create_ui(agent: TxAgent) -> gr.Blocks:
|
180 |
+
with gr.Blocks(theme=gr.themes.Soft(), css=".gradio-container {max-width: 900px !important}") as demo:
|
181 |
+
gr.Markdown("""# Clinical Records Analyzer""")
|
182 |
+
with gr.Row():
|
183 |
+
file_upload = gr.File(label="Upload Excel File", file_types=[".xlsx"])
|
184 |
+
analyze_btn = gr.Button("Analyze", variant="primary")
|
185 |
+
|
186 |
+
with gr.Row():
|
187 |
+
with gr.Column(scale=2):
|
188 |
+
report_output = gr.Markdown()
|
189 |
+
with gr.Column(scale=1):
|
190 |
+
report_file = gr.File(label="Download Report", visible=False)
|
191 |
+
|
192 |
+
full_output = gr.State()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
|
194 |
analyze_btn.click(
|
195 |
fn=stream_report,
|
196 |
inputs=[file_upload, full_output],
|
197 |
+
outputs=[report_output, report_file, full_output]
|
198 |
)
|
199 |
|
200 |
return demo
|
|
|
204 |
agent = init_agent()
|
205 |
demo = create_ui(agent)
|
206 |
demo.launch(
|
207 |
+
server_name="0.0.0.0",
|
208 |
+
server_port=7860,
|
209 |
+
share=False
|
|
|
|
|
210 |
)
|
211 |
except Exception as e:
|
212 |
+
print(f"Application error: {str(e)}", file=sys.stderr)
|
213 |
sys.exit(1)
|