Update app.py
Browse files
app.py
CHANGED
@@ -1,32 +1,49 @@
|
|
|
|
1 |
import os
|
2 |
import pandas as pd
|
3 |
import pdfplumber
|
4 |
-
import
|
5 |
import gradio as gr
|
6 |
-
from typing import List
|
7 |
-
from concurrent.futures import ThreadPoolExecutor
|
8 |
import hashlib
|
|
|
|
|
|
|
|
|
9 |
import multiprocessing
|
10 |
from functools import partial
|
11 |
-
import
|
12 |
|
13 |
-
#
|
14 |
-
logging.getLogger("pdfplumber").setLevel(logging.ERROR)
|
15 |
-
|
16 |
-
# Persistent directories
|
17 |
persistent_dir = "/data/hf_cache"
|
18 |
os.makedirs(persistent_dir, exist_ok=True)
|
|
|
|
|
|
|
19 |
file_cache_dir = os.path.join(persistent_dir, "cache")
|
20 |
report_dir = os.path.join(persistent_dir, "reports")
|
21 |
-
|
|
|
|
|
22 |
os.makedirs(directory, exist_ok=True)
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
def sanitize_utf8(text: str) -> str:
|
25 |
-
"""Sanitize text to handle UTF-8 encoding issues."""
|
26 |
return text.encode("utf-8", "ignore").decode("utf-8")
|
27 |
|
28 |
def file_hash(path: str) -> str:
|
29 |
-
"""Generate MD5 hash of a file."""
|
30 |
with open(path, "rb") as f:
|
31 |
return hashlib.md5(f.read()).hexdigest()
|
32 |
|
@@ -37,12 +54,12 @@ def extract_page_range(file_path: str, start_page: int, end_page: int) -> str:
|
|
37 |
with pdfplumber.open(file_path) as pdf:
|
38 |
for page in pdf.pages[start_page:end_page]:
|
39 |
page_text = page.extract_text() or ""
|
40 |
-
text_chunks.append(page_text.strip())
|
41 |
-
return "\n".join(text_chunks)
|
42 |
except Exception:
|
43 |
return ""
|
44 |
|
45 |
-
def extract_all_pages(file_path: str) -> str:
|
46 |
"""Extract text from all pages of a PDF using parallel processing."""
|
47 |
try:
|
48 |
with pdfplumber.open(file_path) as pdf:
|
@@ -51,8 +68,8 @@ def extract_all_pages(file_path: str) -> str:
|
|
51 |
if total_pages == 0:
|
52 |
return ""
|
53 |
|
54 |
-
# Use
|
55 |
-
num_processes = min(
|
56 |
pages_per_process = max(1, total_pages // num_processes)
|
57 |
|
58 |
# Create page ranges for parallel processing
|
@@ -64,165 +81,263 @@ def extract_all_pages(file_path: str) -> str:
|
|
64 |
# Process page ranges in parallel
|
65 |
with multiprocessing.Pool(processes=num_processes) as pool:
|
66 |
extract_func = partial(extract_page_range, file_path)
|
67 |
-
results =
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
-
return "\n".join(filter(None, results))
|
70 |
-
except Exception:
|
71 |
-
return ""
|
72 |
|
73 |
-
def
|
74 |
-
"""Convert supported file types to text, caching results."""
|
75 |
try:
|
76 |
h = file_hash(file_path)
|
77 |
-
cache_path = os.path.join(file_cache_dir, f"{h}.
|
78 |
if os.path.exists(cache_path):
|
79 |
with open(cache_path, "r", encoding="utf-8") as f:
|
80 |
return f.read()
|
81 |
|
82 |
if file_type == "pdf":
|
83 |
-
text = extract_all_pages(file_path)
|
|
|
84 |
elif file_type == "csv":
|
85 |
df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str,
|
86 |
-
skip_blank_lines=
|
87 |
-
|
|
|
88 |
elif file_type in ["xls", "xlsx"]:
|
89 |
-
|
90 |
-
|
|
|
|
|
|
|
|
|
91 |
else:
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
f.write(text)
|
99 |
-
return text
|
100 |
-
except Exception:
|
101 |
-
return ""
|
102 |
|
103 |
-
def
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
"
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
|
|
|
|
|
|
114 |
|
115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
line = line.strip()
|
117 |
if not line:
|
118 |
continue
|
119 |
-
if
|
120 |
-
current_section = line
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
return sections
|
125 |
-
|
126 |
-
def analyze_medical_records(extracted_text: str) -> str:
|
127 |
-
"""Analyze medical records and return structured response."""
|
128 |
-
# Split text into chunks to handle large inputs
|
129 |
-
chunk_size = 10000
|
130 |
-
chunks = [extracted_text[i:i + chunk_size] for i in range(0, len(extracted_text), chunk_size)]
|
131 |
-
|
132 |
-
# Placeholder for analysis (replace with model or rule-based logic)
|
133 |
-
raw_response_template = """
|
134 |
-
Missed Diagnoses:
|
135 |
-
- Undiagnosed hypertension despite elevated BP readings.
|
136 |
-
- Family history of diabetes not evaluated for prediabetes risk.
|
137 |
-
|
138 |
-
Medication Conflicts:
|
139 |
-
- SSRIs and NSAIDs detected, increasing GI bleeding risk.
|
140 |
-
|
141 |
-
Incomplete Assessments:
|
142 |
-
- No cardiac stress test despite chest pain.
|
143 |
-
|
144 |
-
Urgent Follow-up:
|
145 |
-
- Abnormal ECG requires cardiology referral.
|
146 |
-
"""
|
147 |
-
|
148 |
-
# Aggregate findings across chunks
|
149 |
-
all_sections = {
|
150 |
-
"Missed Diagnoses": set(),
|
151 |
-
"Medication Conflicts": set(),
|
152 |
-
"Incomplete Assessments": set(),
|
153 |
-
"Urgent Follow-up": set()
|
154 |
-
}
|
155 |
-
|
156 |
-
for chunk_idx, chunk in enumerate(chunks, 1):
|
157 |
-
# Simulate analysis per chunk (replace with real logic)
|
158 |
-
raw_response = raw_response_template
|
159 |
-
parsed = parse_analysis_response(raw_response)
|
160 |
-
for section, items in parsed.items():
|
161 |
-
all_sections[section].update(items)
|
162 |
|
163 |
-
#
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
if items:
|
169 |
-
response.extend(sorted(items))
|
170 |
-
has_findings = True
|
171 |
-
else:
|
172 |
-
response.append("- None identified.")
|
173 |
-
response.append("")
|
174 |
-
|
175 |
-
response.append("### Summary")
|
176 |
-
summary = ("The analysis identified potential oversights in diagnosis, medication management, "
|
177 |
-
"assessments, and follow-up needs. Immediate action is recommended.") if has_findings else \
|
178 |
-
"No significant oversights identified. Continue monitoring."
|
179 |
-
response.append(summary)
|
180 |
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
if files:
|
194 |
-
with ThreadPoolExecutor(max_workers=4) as executor:
|
195 |
-
futures = [executor.submit(convert_file_to_text, f.name, f.name.split(".")[-1].lower()) for f in files]
|
196 |
-
results = [f.result() for f in futures]
|
197 |
-
extracted_text = "\n".join(sanitize_utf8(r) for r in results if r)
|
198 |
-
file_hash_value = file_hash(files[0].name) if files else ""
|
199 |
-
|
200 |
-
history.pop() # Remove "Extracting..."
|
201 |
-
history.append({"role": "assistant", "content": "β³ Analyzing medical records..."})
|
202 |
-
yield history, None
|
203 |
-
|
204 |
-
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
|
205 |
-
|
206 |
-
try:
|
207 |
-
response = analyze_medical_records(extracted_text)
|
208 |
-
history.pop() # Remove "Analyzing..."
|
209 |
-
history.append({"role": "assistant", "content": response})
|
210 |
-
if report_path:
|
211 |
-
with open(report_path, "w", encoding="utf-8") as f:
|
212 |
-
f.write(response)
|
213 |
-
yield history, report_path if report_path and os.path.exists(report_path) else None
|
214 |
-
except Exception as e:
|
215 |
-
history.pop() # Remove "Analyzing..."
|
216 |
-
history.append({"role": "assistant", "content": f"β Error: {str(e)}"})
|
217 |
-
yield history, None
|
218 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
219 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
220 |
gr.Markdown("<h1 style='text-align: center;'>π©Ί Clinical Oversight Assistant</h1>")
|
221 |
chatbot = gr.Chatbot(label="Analysis", height=600, type="messages")
|
222 |
file_upload = gr.File(file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple")
|
223 |
msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
|
224 |
send_btn = gr.Button("Analyze", variant="primary")
|
225 |
-
download_output = gr.File(label="Download Report")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
|
227 |
send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
|
228 |
msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
|
@@ -230,14 +345,12 @@ def create_ui():
|
|
230 |
|
231 |
if __name__ == "__main__":
|
232 |
print("π Launching app...")
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
except Exception as e:
|
243 |
-
print(f"Failed to launch app: {str(e)}")
|
|
|
1 |
+
import sys
|
2 |
import os
|
3 |
import pandas as pd
|
4 |
import pdfplumber
|
5 |
+
import json
|
6 |
import gradio as gr
|
7 |
+
from typing import List
|
8 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
9 |
import hashlib
|
10 |
+
import shutil
|
11 |
+
import re
|
12 |
+
import psutil
|
13 |
+
import subprocess
|
14 |
import multiprocessing
|
15 |
from functools import partial
|
16 |
+
import time
|
17 |
|
18 |
+
# Persistent directory
|
|
|
|
|
|
|
19 |
persistent_dir = "/data/hf_cache"
|
20 |
os.makedirs(persistent_dir, exist_ok=True)
|
21 |
+
|
22 |
+
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
|
23 |
+
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
|
24 |
file_cache_dir = os.path.join(persistent_dir, "cache")
|
25 |
report_dir = os.path.join(persistent_dir, "reports")
|
26 |
+
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache")
|
27 |
+
|
28 |
+
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
|
29 |
os.makedirs(directory, exist_ok=True)
|
30 |
|
31 |
+
os.environ["HF_HOME"] = model_cache_dir
|
32 |
+
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
|
33 |
+
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir
|
34 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
35 |
+
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
|
36 |
+
|
37 |
+
current_dir = os.path.dirname(os.path.abspath(__file__))
|
38 |
+
src_path = os.path.abspath(os.path.join(current_dir, "src"))
|
39 |
+
sys.path.insert(0, src_path)
|
40 |
+
|
41 |
+
from txagent.txagent import TxAgent
|
42 |
+
|
43 |
def sanitize_utf8(text: str) -> str:
|
|
|
44 |
return text.encode("utf-8", "ignore").decode("utf-8")
|
45 |
|
46 |
def file_hash(path: str) -> str:
|
|
|
47 |
with open(path, "rb") as f:
|
48 |
return hashlib.md5(f.read()).hexdigest()
|
49 |
|
|
|
54 |
with pdfplumber.open(file_path) as pdf:
|
55 |
for page in pdf.pages[start_page:end_page]:
|
56 |
page_text = page.extract_text() or ""
|
57 |
+
text_chunks.append(f"=== Page {start_page + pdf.pages.index(page) + 1} ===\n{page_text.strip()}")
|
58 |
+
return "\n\n".join(text_chunks)
|
59 |
except Exception:
|
60 |
return ""
|
61 |
|
62 |
+
def extract_all_pages(file_path: str, progress_callback=None) -> str:
|
63 |
"""Extract text from all pages of a PDF using parallel processing."""
|
64 |
try:
|
65 |
with pdfplumber.open(file_path) as pdf:
|
|
|
68 |
if total_pages == 0:
|
69 |
return ""
|
70 |
|
71 |
+
# Use 6 processes (adjust based on CPU cores)
|
72 |
+
num_processes = min(6, multiprocessing.cpu_count())
|
73 |
pages_per_process = max(1, total_pages // num_processes)
|
74 |
|
75 |
# Create page ranges for parallel processing
|
|
|
81 |
# Process page ranges in parallel
|
82 |
with multiprocessing.Pool(processes=num_processes) as pool:
|
83 |
extract_func = partial(extract_page_range, file_path)
|
84 |
+
results = []
|
85 |
+
for idx, result in enumerate(pool.starmap(extract_func, ranges)):
|
86 |
+
results.append(result)
|
87 |
+
if progress_callback:
|
88 |
+
processed_pages = min((idx + 1) * pages_per_process, total_pages)
|
89 |
+
progress_callback(processed_pages, total_pages)
|
90 |
|
91 |
+
return "\n\n".join(filter(None, results))
|
92 |
+
except Exception as e:
|
93 |
+
return f"PDF processing error: {str(e)}"
|
94 |
|
95 |
+
def convert_file_to_json(file_path: str, file_type: str, progress_callback=None) -> str:
|
|
|
96 |
try:
|
97 |
h = file_hash(file_path)
|
98 |
+
cache_path = os.path.join(file_cache_dir, f"{h}.json")
|
99 |
if os.path.exists(cache_path):
|
100 |
with open(cache_path, "r", encoding="utf-8") as f:
|
101 |
return f.read()
|
102 |
|
103 |
if file_type == "pdf":
|
104 |
+
text = extract_all_pages(file_path, progress_callback)
|
105 |
+
result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"})
|
106 |
elif file_type == "csv":
|
107 |
df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str,
|
108 |
+
skip_blank_lines=False, on_bad_lines="skip")
|
109 |
+
content = df.fillna("").astype(str).values.tolist()
|
110 |
+
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
|
111 |
elif file_type in ["xls", "xlsx"]:
|
112 |
+
try:
|
113 |
+
df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
|
114 |
+
except Exception:
|
115 |
+
df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
|
116 |
+
content = df.fillna("").astype(str).values.tolist()
|
117 |
+
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
|
118 |
else:
|
119 |
+
result = json.dumps({"error": f"Unsupported file type: {file_type}"})
|
120 |
+
with open(cache_path, "w", encoding="utf-8") as f:
|
121 |
+
f.write(result)
|
122 |
+
return result
|
123 |
+
except Exception as e:
|
124 |
+
return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"})
|
|
|
|
|
|
|
|
|
125 |
|
126 |
+
def log_system_usage(tag=""):
|
127 |
+
try:
|
128 |
+
cpu = psutil.cpu_percent(interval=1)
|
129 |
+
mem = psutil.virtual_memory()
|
130 |
+
print(f"[{tag}] CPU: {cpu}% | RAM: {mem.used // (1024**2)}MB / {mem.total // (1024**2)}MB")
|
131 |
+
result = subprocess.run(
|
132 |
+
["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
|
133 |
+
capture_output=True, text=True
|
134 |
+
)
|
135 |
+
if result.returncode == 0:
|
136 |
+
used, total, util = result.stdout.strip().split(", ")
|
137 |
+
print(f"[{tag}] GPU: {used}MB / {total}MB | Utilization: {util}%")
|
138 |
+
except Exception as e:
|
139 |
+
print(f"[{tag}] GPU/CPU monitor failed: {e}")
|
140 |
|
141 |
+
def clean_response(text: str) -> str:
|
142 |
+
"""Clean TxAgent response to keep only markdown sections with valid findings."""
|
143 |
+
text = sanitize_utf8(text)
|
144 |
+
# Remove tool call artifacts, None, and reasoning
|
145 |
+
text = re.sub(r"\[.*?\]|\bNone\b|To analyze the patient record excerpt.*?medications\.|Since the previous attempts.*?\.|I need to.*?medications\.|Retrieving tools.*?\.", "", text, flags=re.DOTALL)
|
146 |
+
# Remove extra whitespace and non-markdown content
|
147 |
+
text = re.sub(r"\n{3,}", "\n\n", text)
|
148 |
+
text = re.sub(r"[^\n#\-\*\w\s\.\,\:\(\)]+", "", text) # Keep markdown-relevant characters
|
149 |
+
|
150 |
+
# Extract markdown sections with valid findings
|
151 |
+
sections = []
|
152 |
+
current_section = None
|
153 |
+
lines = text.splitlines()
|
154 |
+
for line in lines:
|
155 |
line = line.strip()
|
156 |
if not line:
|
157 |
continue
|
158 |
+
if re.match(r"###\s*(Missed Diagnoses|Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line):
|
159 |
+
current_section = line
|
160 |
+
sections.append([current_section])
|
161 |
+
elif current_section and re.match(r"-\s*.+", line) and not re.match(r"-\s*No issues identified", line):
|
162 |
+
sections[-1].append(line)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
|
164 |
+
# Combine only non-empty sections
|
165 |
+
cleaned = []
|
166 |
+
for section in sections:
|
167 |
+
if len(section) > 1: # Section has at least one finding
|
168 |
+
cleaned.append("\n".join(section))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
|
170 |
+
text = "\n\n".join(cleaned).strip()
|
171 |
+
if not text:
|
172 |
+
text = "" # Return empty string if no valid findings
|
173 |
+
return text
|
174 |
+
|
175 |
+
def init_agent():
|
176 |
+
print("π Initializing model...")
|
177 |
+
log_system_usage("Before Load")
|
178 |
+
default_tool_path = os.path.abspath("data/new_tool.json")
|
179 |
+
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
|
180 |
+
if not os.path.exists(target_tool_path):
|
181 |
+
shutil.copy(default_tool_path, target_tool_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
|
183 |
+
agent = TxAgent(
|
184 |
+
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
|
185 |
+
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
|
186 |
+
tool_files_dict={"new_tool": target_tool_path},
|
187 |
+
force_finish=True,
|
188 |
+
enable_checker=True,
|
189 |
+
step_rag_num=4,
|
190 |
+
seed=100,
|
191 |
+
additional_default_tools=[],
|
192 |
+
)
|
193 |
+
agent.init_model()
|
194 |
+
log_system_usage("After Load")
|
195 |
+
print("β
Agent Ready")
|
196 |
+
return agent
|
197 |
+
|
198 |
+
def create_ui(agent):
|
199 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
200 |
gr.Markdown("<h1 style='text-align: center;'>π©Ί Clinical Oversight Assistant</h1>")
|
201 |
chatbot = gr.Chatbot(label="Analysis", height=600, type="messages")
|
202 |
file_upload = gr.File(file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple")
|
203 |
msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
|
204 |
send_btn = gr.Button("Analyze", variant="primary")
|
205 |
+
download_output = gr.File(label="Download Full Report")
|
206 |
+
|
207 |
+
def analyze(message: str, history: List[dict], files: List):
|
208 |
+
history.append({"role": "user", "content": message})
|
209 |
+
history.append({"role": "assistant", "content": "β³ Extracting text from files..."})
|
210 |
+
yield history, None
|
211 |
+
|
212 |
+
extracted = ""
|
213 |
+
file_hash_value = ""
|
214 |
+
if files:
|
215 |
+
# Progress callback for extraction
|
216 |
+
total_pages = 0
|
217 |
+
processed_pages = 0
|
218 |
+
def update_extraction_progress(current, total):
|
219 |
+
nonlocal processed_pages, total_pages
|
220 |
+
processed_pages = current
|
221 |
+
total_pages = total
|
222 |
+
animation = ["π", "π", "βοΈ", "π"][(int(time.time() * 2) % 4)]
|
223 |
+
history[-1] = {"role": "assistant", "content": f"Extracting text... {animation} Page {processed_pages}/{total_pages}"}
|
224 |
+
return history, None
|
225 |
+
|
226 |
+
with ThreadPoolExecutor(max_workers=6) as executor:
|
227 |
+
futures = [executor.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower(), update_extraction_progress) for f in files]
|
228 |
+
results = [sanitize_utf8(f.result()) for f in as_completed(futures)]
|
229 |
+
extracted = "\n".join(results)
|
230 |
+
file_hash_value = file_hash(files[0].name) if files else ""
|
231 |
+
|
232 |
+
history.pop() # Remove extraction message
|
233 |
+
history.append({"role": "assistant", "content": "β
Text extraction complete."})
|
234 |
+
yield history, None
|
235 |
+
|
236 |
+
# Split extracted text into chunks of ~6,000 characters
|
237 |
+
chunk_size = 6000
|
238 |
+
chunks = [extracted[i:i + chunk_size] for i in range(0, len(extracted), chunk_size)]
|
239 |
+
combined_response = ""
|
240 |
+
|
241 |
+
prompt_template = """
|
242 |
+
You are a medical analysis assistant. Analyze the following patient record excerpt for clinical oversights and provide a concise, evidence-based summary in markdown format under these headings: Missed Diagnoses, Medication Conflicts, Incomplete Assessments, and Urgent Follow-up. For each finding, include:
|
243 |
+
- Clinical context (why the issue was missed or relevant details from the record).
|
244 |
+
- Potential risks if unaddressed (e.g., disease progression, adverse events).
|
245 |
+
- Actionable recommendations (e.g., tests, referrals, medication adjustments).
|
246 |
+
Output ONLY the markdown-formatted findings, with bullet points under each heading. Do NOT include reasoning, tool calls, or intermediate steps. If no issues are found in a section, state "No issues identified." Ensure the output is specific to the provided text and avoids generic responses.
|
247 |
+
|
248 |
+
Example Output:
|
249 |
+
### Missed Diagnoses
|
250 |
+
- Elevated BP noted without diagnosis. Missed due to inconsistent visits. Risks: stroke. Recommend: BP monitoring, antihypertensives.
|
251 |
+
### Medication Conflicts
|
252 |
+
- No issues identified.
|
253 |
+
### Incomplete Assessments
|
254 |
+
- Chest pain not evaluated. Time constraints likely cause. Risks: cardiac issues. Recommend: ECG, stress test.
|
255 |
+
### Urgent Follow-up
|
256 |
+
- Abnormal creatinine not addressed. Delayed lab review. Risks: renal failure. Recommend: nephrology referral.
|
257 |
+
|
258 |
+
Patient Record Excerpt (Chunk {0} of {1}):
|
259 |
+
{chunk}
|
260 |
+
|
261 |
+
### Missed Diagnoses
|
262 |
+
- ...
|
263 |
+
|
264 |
+
### Medication Conflicts
|
265 |
+
- ...
|
266 |
+
|
267 |
+
### Incomplete Assessments
|
268 |
+
- ...
|
269 |
+
|
270 |
+
### Urgent Follow-up
|
271 |
+
- ...
|
272 |
+
"""
|
273 |
+
|
274 |
+
try:
|
275 |
+
# Process each chunk and stream results in real-time
|
276 |
+
for chunk_idx, chunk in enumerate(chunks, 1):
|
277 |
+
# Update UI with chunk progress
|
278 |
+
animation = ["π", "π", "π§ ", "π"][(int(time.time() * 2) % 4)]
|
279 |
+
history.append({"role": "assistant", "content": f"Analyzing records... {animation} Chunk {chunk_idx}/{len(chunks)}"})
|
280 |
+
yield history, None
|
281 |
+
|
282 |
+
prompt = prompt_template.format(chunk_idx, len(chunks), chunk=chunk[:4000]) # Truncate to avoid token limits
|
283 |
+
chunk_response = ""
|
284 |
+
for chunk_output in agent.run_gradio_chat(
|
285 |
+
message=prompt,
|
286 |
+
history=[],
|
287 |
+
temperature=0.2,
|
288 |
+
max_new_tokens=1024,
|
289 |
+
max_token=4096,
|
290 |
+
call_agent=False,
|
291 |
+
conversation=[],
|
292 |
+
):
|
293 |
+
if chunk_output is None:
|
294 |
+
continue
|
295 |
+
if isinstance(chunk_output, list):
|
296 |
+
for m in chunk_output:
|
297 |
+
if hasattr(m, 'content') and m.content:
|
298 |
+
cleaned = clean_response(m.content)
|
299 |
+
if cleaned and re.search(r"###\s*(Missed Diagnoses|Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", cleaned):
|
300 |
+
chunk_response += cleaned + "\n\n"
|
301 |
+
# Update UI with partial response
|
302 |
+
if history[-1]["content"].startswith("Analyzing"):
|
303 |
+
history[-1] = {"role": "assistant", "content": f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response.strip()}"}
|
304 |
+
else:
|
305 |
+
history[-1]["content"] = f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response.strip()}"
|
306 |
+
yield history, None
|
307 |
+
elif isinstance(chunk_output, str) and chunk_output.strip():
|
308 |
+
cleaned = clean_response(chunk_output)
|
309 |
+
if cleaned and re.search(r"###\s*(Missed Diagnoses|Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", cleaned):
|
310 |
+
chunk_response += cleaned + "\n\n"
|
311 |
+
# Update UI with partial response
|
312 |
+
if history[-1]["content"].startswith("Analyzing"):
|
313 |
+
history[-1] = {"role": "assistant", "content": f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response.strip()}"}
|
314 |
+
else:
|
315 |
+
history[-1]["content"] = f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response.strip()}"
|
316 |
+
yield history, None
|
317 |
+
|
318 |
+
# Append completed chunk response to combined response
|
319 |
+
if chunk_response:
|
320 |
+
combined_response += f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response}\n"
|
321 |
+
else:
|
322 |
+
combined_response += f"--- Analysis for Chunk {chunk_idx} ---\nNo oversights identified for this chunk.\n\n"
|
323 |
+
|
324 |
+
# Finalize UI with complete response
|
325 |
+
if combined_response.strip() and not all("No oversights identified" in chunk for chunk in combined_response.split("--- Analysis for Chunk")):
|
326 |
+
history[-1]["content"] = combined_response.strip()
|
327 |
+
else:
|
328 |
+
history.append({"role": "assistant", "content": "No oversights identified in the provided records."})
|
329 |
+
|
330 |
+
# Generate report file
|
331 |
+
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
|
332 |
+
if report_path:
|
333 |
+
with open(report_path, "w", encoding="utf-8") as f:
|
334 |
+
f.write(combined_response)
|
335 |
+
yield history, report_path if report_path and os.path.exists(report_path) else None
|
336 |
+
|
337 |
+
except Exception as e:
|
338 |
+
print("π¨ ERROR:", e)
|
339 |
+
history.append({"role": "assistant", "content": f"β Error occurred: {str(e)}"})
|
340 |
+
yield history, None
|
341 |
|
342 |
send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
|
343 |
msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
|
|
|
345 |
|
346 |
if __name__ == "__main__":
|
347 |
print("π Launching app...")
|
348 |
+
agent = init_agent()
|
349 |
+
demo = create_ui(agent)
|
350 |
+
demo.queue(api_open=False).launch(
|
351 |
+
server_name="0.0.0.0",
|
352 |
+
server_port=7860,
|
353 |
+
show_error=True,
|
354 |
+
allowed_paths=[report_dir],
|
355 |
+
share=False
|
356 |
+
)
|
|
|
|