Update app.py
Browse files
app.py
CHANGED
@@ -1,251 +1,228 @@
|
|
1 |
-
import sys
|
2 |
import os
|
3 |
import pandas as pd
|
4 |
import pdfplumber
|
5 |
-
import
|
6 |
import gradio as gr
|
7 |
-
from typing import List
|
8 |
-
from concurrent.futures import ThreadPoolExecutor
|
9 |
import hashlib
|
10 |
-
import
|
11 |
-
import
|
12 |
-
import
|
13 |
-
|
|
|
|
|
14 |
|
15 |
-
# Persistent
|
16 |
persistent_dir = "/data/hf_cache"
|
17 |
os.makedirs(persistent_dir, exist_ok=True)
|
18 |
-
|
19 |
-
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
|
20 |
-
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
|
21 |
file_cache_dir = os.path.join(persistent_dir, "cache")
|
22 |
report_dir = os.path.join(persistent_dir, "reports")
|
23 |
-
|
24 |
-
|
25 |
-
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
|
26 |
os.makedirs(directory, exist_ok=True)
|
27 |
|
28 |
-
os.environ["HF_HOME"] = model_cache_dir
|
29 |
-
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
|
30 |
-
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir
|
31 |
-
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
32 |
-
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
|
33 |
-
|
34 |
-
current_dir = os.path.dirname(os.path.abspath(__file__))
|
35 |
-
src_path = os.path.abspath(os.path.join(current_dir, "src"))
|
36 |
-
sys.path.insert(0, src_path)
|
37 |
-
|
38 |
-
from txagent.txagent import TxAgent
|
39 |
-
|
40 |
-
MEDICAL_KEYWORDS = {'diagnosis', 'assessment', 'plan', 'results', 'medications',
|
41 |
-
'allergies', 'summary', 'impression', 'findings', 'recommendations'}
|
42 |
-
|
43 |
def sanitize_utf8(text: str) -> str:
|
|
|
44 |
return text.encode("utf-8", "ignore").decode("utf-8")
|
45 |
|
46 |
def file_hash(path: str) -> str:
|
|
|
47 |
with open(path, "rb") as f:
|
48 |
return hashlib.md5(f.read()).hexdigest()
|
49 |
|
50 |
-
def
|
|
|
51 |
try:
|
52 |
text_chunks = []
|
53 |
with pdfplumber.open(file_path) as pdf:
|
54 |
-
for
|
55 |
page_text = page.extract_text() or ""
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
return f"PDF processing error: {str(e)}"
|
61 |
|
62 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
try:
|
64 |
h = file_hash(file_path)
|
65 |
-
cache_path = os.path.join(file_cache_dir, f"{h}.
|
66 |
if os.path.exists(cache_path):
|
67 |
with open(cache_path, "r", encoding="utf-8") as f:
|
68 |
return f.read()
|
69 |
|
70 |
if file_type == "pdf":
|
71 |
-
text =
|
72 |
-
result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"})
|
73 |
elif file_type == "csv":
|
74 |
df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str,
|
75 |
-
skip_blank_lines=
|
76 |
-
|
77 |
-
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
|
78 |
elif file_type in ["xls", "xlsx"]:
|
79 |
-
|
80 |
-
|
81 |
-
except Exception:
|
82 |
-
df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
|
83 |
-
content = df.fillna("").astype(str).values.tolist()
|
84 |
-
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
|
85 |
else:
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
|
137 |
-
def create_ui(agent):
|
138 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
139 |
gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
|
140 |
chatbot = gr.Chatbot(label="Analysis", height=600, type="messages")
|
141 |
file_upload = gr.File(file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple")
|
142 |
msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
|
143 |
send_btn = gr.Button("Analyze", variant="primary")
|
144 |
-
download_output = gr.File(label="Download
|
145 |
-
|
146 |
-
def analyze(message: str, history: List[dict], files: List):
|
147 |
-
history.append({"role": "user", "content": message})
|
148 |
-
history.append({"role": "assistant", "content": "⏳ Analyzing records for potential oversights..."})
|
149 |
-
yield history, None
|
150 |
-
|
151 |
-
extracted = ""
|
152 |
-
file_hash_value = ""
|
153 |
-
if files:
|
154 |
-
with ThreadPoolExecutor(max_workers=6) as executor:
|
155 |
-
futures = [executor.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower()) for f in files]
|
156 |
-
results = [sanitize_utf8(f.result()) for f in as_completed(futures)]
|
157 |
-
extracted = "\n".join(results)
|
158 |
-
file_hash_value = file_hash(files[0].name) if files else ""
|
159 |
-
|
160 |
-
# Split extracted text into chunks of ~6,000 characters
|
161 |
-
chunk_size = 6000
|
162 |
-
chunks = [extracted[i:i + chunk_size] for i in range(0, len(extracted), chunk_size)]
|
163 |
-
combined_response = ""
|
164 |
-
|
165 |
-
prompt_template = f"""
|
166 |
-
Analyze the medical records for clinical oversights. Provide a concise, evidence-based summary under these headings:
|
167 |
-
1. **Missed Diagnoses**:
|
168 |
-
- Identify inconsistencies in history, symptoms, or tests.
|
169 |
-
- Consider psychiatric, neurological, infectious, autoimmune, genetic conditions, family history, trauma, and developmental factors.
|
170 |
-
2. **Medication Conflicts**:
|
171 |
-
- Check for contraindications, interactions, or unjustified off-label use.
|
172 |
-
- Assess if medications worsen diagnoses or cause adverse effects.
|
173 |
-
3. **Incomplete Assessments**:
|
174 |
-
- Note missing or superficial cognitive, psychiatric, social, or family assessments.
|
175 |
-
- Highlight gaps in medical history, substance use, or lab/imaging documentation.
|
176 |
-
4. **Urgent Follow-up**:
|
177 |
-
- Flag abnormal lab results, imaging, behaviors, or legal history needing immediate reassessment or referral.
|
178 |
-
Medical Records (Chunk {0} of {1}):
|
179 |
-
{{chunk}}
|
180 |
-
Begin analysis:
|
181 |
-
"""
|
182 |
-
|
183 |
-
try:
|
184 |
-
if history and history[-1]["content"].startswith("⏳"):
|
185 |
-
history.pop()
|
186 |
-
|
187 |
-
# Process each chunk and stream results in real-time
|
188 |
-
for chunk_idx, chunk in enumerate(chunks, 1):
|
189 |
-
# Update UI with progress
|
190 |
-
history.append({"role": "assistant", "content": f"🔄 Processing Chunk {chunk_idx} of {len(chunks)}..."})
|
191 |
-
yield history, None
|
192 |
-
|
193 |
-
prompt = prompt_template.format(chunk_idx, len(chunks), chunk=chunk)
|
194 |
-
chunk_response = ""
|
195 |
-
for chunk_output in agent.run_gradio_chat(
|
196 |
-
message=prompt,
|
197 |
-
history=[],
|
198 |
-
temperature=0.2,
|
199 |
-
max_new_tokens=1024,
|
200 |
-
max_token=4096,
|
201 |
-
call_agent=False,
|
202 |
-
conversation=[],
|
203 |
-
):
|
204 |
-
if chunk_output is None:
|
205 |
-
continue
|
206 |
-
if isinstance(chunk_output, list):
|
207 |
-
for m in chunk_output:
|
208 |
-
if hasattr(m, 'content') and m.content:
|
209 |
-
cleaned = clean_response(m.content)
|
210 |
-
if cleaned:
|
211 |
-
chunk_response += cleaned + "\n"
|
212 |
-
# Update UI with partial response
|
213 |
-
if history[-1]["content"].startswith("🔄"):
|
214 |
-
history[-1] = {"role": "assistant", "content": f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response.strip()}"}
|
215 |
-
else:
|
216 |
-
history[-1]["content"] = f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response.strip()}"
|
217 |
-
yield history, None
|
218 |
-
elif isinstance(chunk_output, str) and chunk_output.strip():
|
219 |
-
cleaned = clean_response(chunk_output)
|
220 |
-
if cleaned:
|
221 |
-
chunk_response += cleaned + "\n"
|
222 |
-
# Update UI with partial response
|
223 |
-
if history[-1]["content"].startswith("🔄"):
|
224 |
-
history[-1] = {"role": "assistant", "content": f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response.strip()}"}
|
225 |
-
else:
|
226 |
-
history[-1]["content"] = f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response.strip()}"
|
227 |
-
yield history, None
|
228 |
-
|
229 |
-
# Append completed chunk response to combined response
|
230 |
-
combined_response += f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response}\n"
|
231 |
-
|
232 |
-
# Finalize UI with complete response
|
233 |
-
if combined_response:
|
234 |
-
history[-1]["content"] = combined_response.strip()
|
235 |
-
else:
|
236 |
-
history.append({"role": "assistant", "content": "No oversights identified."})
|
237 |
-
|
238 |
-
# Generate report file
|
239 |
-
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
|
240 |
-
if report_path:
|
241 |
-
with open(report_path, "w", encoding="utf-8") as f:
|
242 |
-
f.write(combined_response)
|
243 |
-
yield history, report_path if report_path and os.path.exists(report_path) else None
|
244 |
-
|
245 |
-
except Exception as e:
|
246 |
-
print("🚨 ERROR:", e)
|
247 |
-
history.append({"role": "assistant", "content": f"❌ Error occurred: {str(e)}"})
|
248 |
-
yield history, None
|
249 |
|
250 |
send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
|
251 |
msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
|
@@ -253,12 +230,14 @@ Begin analysis:
|
|
253 |
|
254 |
if __name__ == "__main__":
|
255 |
print("🚀 Launching app...")
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import pandas as pd
|
3 |
import pdfplumber
|
4 |
+
import re
|
5 |
import gradio as gr
|
6 |
+
from typing import List, Dict
|
7 |
+
from concurrent.futures import ThreadPoolExecutor
|
8 |
import hashlib
|
9 |
+
import multiprocessing
|
10 |
+
from functools import partial
|
11 |
+
import logging
|
12 |
+
|
13 |
+
# Suppress pdfplumber CropBox warnings
|
14 |
+
logging.getLogger("pdfplumber").setLevel(logging.ERROR)
|
15 |
|
16 |
+
# Persistent directories
|
17 |
persistent_dir = "/data/hf_cache"
|
18 |
os.makedirs(persistent_dir, exist_ok=True)
|
|
|
|
|
|
|
19 |
file_cache_dir = os.path.join(persistent_dir, "cache")
|
20 |
report_dir = os.path.join(persistent_dir, "reports")
|
21 |
+
for directory in [file_cache_dir, report_dir]:
|
|
|
|
|
22 |
os.makedirs(directory, exist_ok=True)
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
def sanitize_utf8(text: str) -> str:
|
25 |
+
"""Sanitize text to handle UTF-8 encoding issues."""
|
26 |
return text.encode("utf-8", "ignore").decode("utf-8")
|
27 |
|
28 |
def file_hash(path: str) -> str:
|
29 |
+
"""Generate MD5 hash of a file."""
|
30 |
with open(path, "rb") as f:
|
31 |
return hashlib.md5(f.read()).hexdigest()
|
32 |
|
33 |
+
def extract_page_range(file_path: str, start_page: int, end_page: int) -> str:
|
34 |
+
"""Extract text from a range of PDF pages."""
|
35 |
try:
|
36 |
text_chunks = []
|
37 |
with pdfplumber.open(file_path) as pdf:
|
38 |
+
for page in pdf.pages[start_page:end_page]:
|
39 |
page_text = page.extract_text() or ""
|
40 |
+
text_chunks.append(page_text.strip())
|
41 |
+
return "\n".join(text_chunks)
|
42 |
+
except Exception:
|
43 |
+
return ""
|
|
|
44 |
|
45 |
+
def extract_all_pages(file_path: str) -> str:
|
46 |
+
"""Extract text from all pages of a PDF using parallel processing."""
|
47 |
+
try:
|
48 |
+
with pdfplumber.open(file_path) as pdf:
|
49 |
+
total_pages = len(pdf.pages)
|
50 |
+
|
51 |
+
if total_pages == 0:
|
52 |
+
return ""
|
53 |
+
|
54 |
+
# Use 4 processes (adjust based on CPU cores)
|
55 |
+
num_processes = min(4, multiprocessing.cpu_count())
|
56 |
+
pages_per_process = max(1, total_pages // num_processes)
|
57 |
+
|
58 |
+
# Create page ranges for parallel processing
|
59 |
+
ranges = [(i * pages_per_process, min((i + 1) * pages_per_process, total_pages))
|
60 |
+
for i in range(num_processes)]
|
61 |
+
if ranges[-1][1] != total_pages:
|
62 |
+
ranges[-1] = (ranges[-1][0], total_pages)
|
63 |
+
|
64 |
+
# Process page ranges in parallel
|
65 |
+
with multiprocessing.Pool(processes=num_processes) as pool:
|
66 |
+
extract_func = partial(extract_page_range, file_path)
|
67 |
+
results = pool.starmap(extract_func, ranges)
|
68 |
+
|
69 |
+
return "\n".join(filter(None, results))
|
70 |
+
except Exception:
|
71 |
+
return ""
|
72 |
+
|
73 |
+
def convert_file_to_text(file_path: str, file_type: str) -> str:
|
74 |
+
"""Convert supported file types to text, caching results."""
|
75 |
try:
|
76 |
h = file_hash(file_path)
|
77 |
+
cache_path = os.path.join(file_cache_dir, f"{h}.txt")
|
78 |
if os.path.exists(cache_path):
|
79 |
with open(cache_path, "r", encoding="utf-8") as f:
|
80 |
return f.read()
|
81 |
|
82 |
if file_type == "pdf":
|
83 |
+
text = extract_all_pages(file_path)
|
|
|
84 |
elif file_type == "csv":
|
85 |
df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str,
|
86 |
+
skip_blank_lines=True, on_bad_lines="skip")
|
87 |
+
text = " ".join(df.fillna("").astype(str).agg(" ".join, axis=1))
|
|
|
88 |
elif file_type in ["xls", "xlsx"]:
|
89 |
+
df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
|
90 |
+
text = " ".join(df.fillna("").astype(str).agg(" ".join, axis=1))
|
|
|
|
|
|
|
|
|
91 |
else:
|
92 |
+
text = ""
|
93 |
+
|
94 |
+
if text:
|
95 |
+
# Compress text by removing redundant whitespace
|
96 |
+
text = re.sub(r'\s+', ' ', text).strip()
|
97 |
+
with open(cache_path, "w", encoding="utf-8") as f:
|
98 |
+
f.write(text)
|
99 |
+
return text
|
100 |
+
except Exception:
|
101 |
+
return ""
|
102 |
+
|
103 |
+
def parse_analysis_response(raw_response: str) -> Dict[str, List[str]]:
|
104 |
+
"""Parse raw analysis response into structured sections using regex."""
|
105 |
+
sections = {
|
106 |
+
"Missed Diagnoses": [],
|
107 |
+
"Medication Conflicts": [],
|
108 |
+
"Incomplete Assessments": [],
|
109 |
+
"Urgent Follow-up": []
|
110 |
+
}
|
111 |
+
current_section = None
|
112 |
+
section_pattern = re.compile(r"^(Missed Diagnoses|Medication Conflicts|Incomplete Assessments|Urgent Follow-up):$", re.MULTILINE)
|
113 |
+
item_pattern = re.compile(r"^- .+$", re.MULTILINE)
|
114 |
+
|
115 |
+
for line in raw_response.splitlines():
|
116 |
+
line = line.strip()
|
117 |
+
if not line:
|
118 |
+
continue
|
119 |
+
if section_pattern.match(line):
|
120 |
+
current_section = line[:-1]
|
121 |
+
elif current_section and item_pattern.match(line):
|
122 |
+
sections[current_section].append(line)
|
123 |
+
|
124 |
+
return sections
|
125 |
+
|
126 |
+
def analyze_medical_records(extracted_text: str) -> str:
|
127 |
+
"""Analyze medical records and return structured response."""
|
128 |
+
# Split text into chunks to handle large inputs
|
129 |
+
chunk_size = 10000
|
130 |
+
chunks = [extracted_text[i:i + chunk_size] for i in range(0, len(extracted_text), chunk_size)]
|
131 |
+
|
132 |
+
# Placeholder for analysis (replace with model or rule-based logic)
|
133 |
+
raw_response_template = """
|
134 |
+
Missed Diagnoses:
|
135 |
+
- Undiagnosed hypertension despite elevated BP readings.
|
136 |
+
- Family history of diabetes not evaluated for prediabetes risk.
|
137 |
+
|
138 |
+
Medication Conflicts:
|
139 |
+
- SSRIs and NSAIDs detected, increasing GI bleeding risk.
|
140 |
+
|
141 |
+
Incomplete Assessments:
|
142 |
+
- No cardiac stress test despite chest pain.
|
143 |
+
|
144 |
+
Urgent Follow-up:
|
145 |
+
- Abnormal ECG requires cardiology referral.
|
146 |
+
"""
|
147 |
+
|
148 |
+
# Aggregate findings across chunks
|
149 |
+
all_sections = {
|
150 |
+
"Missed Diagnoses": set(),
|
151 |
+
"Medication Conflicts": set(),
|
152 |
+
"Incomplete Assessments": set(),
|
153 |
+
"Urgent Follow-up": set()
|
154 |
+
}
|
155 |
+
|
156 |
+
for chunk_idx, chunk in enumerate(chunks, 1):
|
157 |
+
# Simulate analysis per chunk (replace with real logic)
|
158 |
+
raw_response = raw_response_template
|
159 |
+
parsed = parse_analysis_response(raw_response)
|
160 |
+
for section, items in parsed.items():
|
161 |
+
all_sections[section].update(items)
|
162 |
+
|
163 |
+
# Format final response
|
164 |
+
response = ["### Clinical Oversight Analysis\n"]
|
165 |
+
has_findings = False
|
166 |
+
for section, items in all_sections.items():
|
167 |
+
response.append(f"#### {section}")
|
168 |
+
if items:
|
169 |
+
response.extend(sorted(items))
|
170 |
+
has_findings = True
|
171 |
+
else:
|
172 |
+
response.append("- None identified.")
|
173 |
+
response.append("")
|
174 |
+
|
175 |
+
response.append("### Summary")
|
176 |
+
summary = ("The analysis identified potential oversights in diagnosis, medication management, "
|
177 |
+
"assessments, and follow-up needs. Immediate action is recommended.") if has_findings else \
|
178 |
+
"No significant oversights identified. Continue monitoring."
|
179 |
+
response.append(summary)
|
180 |
+
|
181 |
+
return "\n".join(response)
|
182 |
+
|
183 |
+
def create_ui():
|
184 |
+
"""Create Gradio UI for clinical oversight analysis."""
|
185 |
+
def analyze(message: str, history: List[dict], files: List):
|
186 |
+
"""Handle analysis and return results."""
|
187 |
+
history.append({"role": "user", "content": message})
|
188 |
+
history.append({"role": "assistant", "content": "⏳ Extracting text from files..."})
|
189 |
+
yield history, None
|
190 |
+
|
191 |
+
extracted_text = ""
|
192 |
+
file_hash_value = ""
|
193 |
+
if files:
|
194 |
+
with ThreadPoolExecutor(max_workers=4) as executor:
|
195 |
+
futures = [executor.submit(convert_file_to_text, f.name, f.name.split(".")[-1].lower()) for f in files]
|
196 |
+
results = [f.result() for f in futures]
|
197 |
+
extracted_text = "\n".join(sanitize_utf8(r) for r in results if r)
|
198 |
+
file_hash_value = file_hash(files[0].name) if files else ""
|
199 |
+
|
200 |
+
history.pop() # Remove "Extracting..."
|
201 |
+
history.append({"role": "assistant", "content": "⏳ Analyzing medical records..."})
|
202 |
+
yield history, None
|
203 |
+
|
204 |
+
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
|
205 |
+
|
206 |
+
try:
|
207 |
+
response = analyze_medical_records(extracted_text)
|
208 |
+
history.pop() # Remove "Analyzing..."
|
209 |
+
history.append({"role": "assistant", "content": response})
|
210 |
+
if report_path:
|
211 |
+
with open(report_path, "w", encoding="utf-8") as f:
|
212 |
+
f.write(response)
|
213 |
+
yield history, report_path if report_path and os.path.exists(report_path) else None
|
214 |
+
except Exception as e:
|
215 |
+
history.pop() # Remove "Analyzing..."
|
216 |
+
history.append({"role": "assistant", "content": f"❌ Error: {str(e)}"})
|
217 |
+
yield history, None
|
218 |
|
|
|
219 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
220 |
gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
|
221 |
chatbot = gr.Chatbot(label="Analysis", height=600, type="messages")
|
222 |
file_upload = gr.File(file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple")
|
223 |
msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
|
224 |
send_btn = gr.Button("Analyze", variant="primary")
|
225 |
+
download_output = gr.File(label="Download Report")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
|
227 |
send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
|
228 |
msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
|
|
|
230 |
|
231 |
if __name__ == "__main__":
|
232 |
print("🚀 Launching app...")
|
233 |
+
try:
|
234 |
+
demo = create_ui()
|
235 |
+
demo.launch(
|
236 |
+
server_name="0.0.0.0",
|
237 |
+
server_port=7860,
|
238 |
+
show_error=True,
|
239 |
+
allowed_paths=[report_dir],
|
240 |
+
share=False
|
241 |
+
)
|
242 |
+
except Exception as e:
|
243 |
+
print(f"Failed to launch app: {str(e)}")
|