Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,15 @@
|
|
1 |
import sys
|
2 |
import os
|
3 |
import pandas as pd
|
4 |
-
import pdfplumber
|
5 |
import json
|
6 |
import gradio as gr
|
7 |
from typing import List
|
8 |
-
from concurrent.futures import ThreadPoolExecutor, as_completed
|
9 |
import hashlib
|
10 |
import shutil
|
11 |
import re
|
12 |
-
import
|
13 |
-
import subprocess
|
14 |
-
import multiprocessing
|
15 |
-
from functools import partial
|
16 |
import time
|
17 |
|
18 |
-
# Persistent directory
|
19 |
persistent_dir = "/data/hf_cache"
|
20 |
os.makedirs(persistent_dir, exist_ok=True)
|
21 |
|
@@ -23,16 +17,12 @@ model_cache_dir = os.path.join(persistent_dir, "txagent_models")
|
|
23 |
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
|
24 |
file_cache_dir = os.path.join(persistent_dir, "cache")
|
25 |
report_dir = os.path.join(persistent_dir, "reports")
|
26 |
-
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache")
|
27 |
|
28 |
-
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir
|
29 |
os.makedirs(directory, exist_ok=True)
|
30 |
|
31 |
os.environ["HF_HOME"] = model_cache_dir
|
32 |
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
|
33 |
-
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir
|
34 |
-
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
35 |
-
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
|
36 |
|
37 |
current_dir = os.path.dirname(os.path.abspath(__file__))
|
38 |
src_path = os.path.abspath(os.path.join(current_dir, "src"))
|
@@ -40,146 +30,56 @@ sys.path.insert(0, src_path)
|
|
40 |
|
41 |
from txagent.txagent import TxAgent
|
42 |
|
43 |
-
def sanitize_utf8(text: str) -> str:
|
44 |
-
return text.encode("utf-8", "ignore").decode("utf-8")
|
45 |
-
|
46 |
def file_hash(path: str) -> str:
|
47 |
with open(path, "rb") as f:
|
48 |
return hashlib.md5(f.read()).hexdigest()
|
49 |
|
50 |
-
def
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
# Create page ranges for parallel processing
|
76 |
-
ranges = [(i * pages_per_process, min((i + 1) * pages_per_process, total_pages))
|
77 |
-
for i in range(num_processes)]
|
78 |
-
if ranges[-1][1] != total_pages:
|
79 |
-
ranges[-1] = (ranges[-1][0], total_pages)
|
80 |
-
|
81 |
-
# Process page ranges in parallel
|
82 |
-
with multiprocessing.Pool(processes=num_processes) as pool:
|
83 |
-
extract_func = partial(extract_page_range, file_path)
|
84 |
-
results = []
|
85 |
-
for idx, result in enumerate(pool.starmap(extract_func, ranges)):
|
86 |
-
results.append(result)
|
87 |
-
if progress_callback:
|
88 |
-
processed_pages = min((idx + 1) * pages_per_process, total_pages)
|
89 |
-
progress_callback(processed_pages, total_pages)
|
90 |
-
|
91 |
-
return "\n\n".join(filter(None, results))
|
92 |
-
except Exception as e:
|
93 |
-
return f"PDF processing error: {str(e)}"
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
h = file_hash(file_path)
|
98 |
-
cache_path = os.path.join(file_cache_dir, f"{h}.json")
|
99 |
-
if os.path.exists(cache_path):
|
100 |
-
with open(cache_path, "r", encoding="utf-8") as f:
|
101 |
-
return f.read()
|
102 |
|
103 |
-
|
104 |
-
|
105 |
-
result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"})
|
106 |
-
elif file_type == "csv":
|
107 |
-
df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str,
|
108 |
-
skip_blank_lines=False, on_bad_lines="skip")
|
109 |
-
content = df.fillna("").astype(str).values.tolist()
|
110 |
-
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
|
111 |
-
elif file_type in ["xls", "xlsx"]:
|
112 |
-
try:
|
113 |
-
df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
|
114 |
-
except Exception:
|
115 |
-
df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
|
116 |
-
content = df.fillna("").astype(str).values.tolist()
|
117 |
-
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
|
118 |
-
else:
|
119 |
-
result = json.dumps({"error": f"Unsupported file type: {file_type}"})
|
120 |
-
with open(cache_path, "w", encoding="utf-8") as f:
|
121 |
-
f.write(result)
|
122 |
-
return result
|
123 |
-
except Exception as e:
|
124 |
-
return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"})
|
125 |
|
126 |
-
|
127 |
-
|
128 |
-
cpu = psutil.cpu_percent(interval=1)
|
129 |
-
mem = psutil.virtual_memory()
|
130 |
-
print(f"[{tag}] CPU: {cpu}% | RAM: {mem.used // (1024**2)}MB / {mem.total // (1024**2)}MB")
|
131 |
-
result = subprocess.run(
|
132 |
-
["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
|
133 |
-
capture_output=True, text=True
|
134 |
-
)
|
135 |
-
if result.returncode == 0:
|
136 |
-
used, total, util = result.stdout.strip().split(", ")
|
137 |
-
print(f"[{tag}] GPU: {used}MB / {total}MB | Utilization: {util}%")
|
138 |
-
except Exception as e:
|
139 |
-
print(f"[{tag}] GPU/CPU monitor failed: {e}")
|
140 |
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
# Remove extra whitespace and non-markdown content
|
147 |
-
text = re.sub(r"\n{3,}", "\n\n", text)
|
148 |
-
text = re.sub(r"[^\n#\-\*\w\s\.\,\:\(\)]+", "", text) # Keep markdown-relevant characters
|
149 |
-
|
150 |
-
# Extract markdown sections with valid findings
|
151 |
-
sections = []
|
152 |
-
current_section = None
|
153 |
-
lines = text.splitlines()
|
154 |
-
for line in lines:
|
155 |
-
line = line.strip()
|
156 |
-
if not line:
|
157 |
-
continue
|
158 |
-
if re.match(r"###\s*(Missed Diagnoses|Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line):
|
159 |
-
current_section = line
|
160 |
-
sections.append([current_section])
|
161 |
-
elif current_section and re.match(r"-\s*.+", line) and not re.match(r"-\s*No issues identified", line):
|
162 |
-
sections[-1].append(line)
|
163 |
-
|
164 |
-
# Combine only non-empty sections
|
165 |
-
cleaned = []
|
166 |
-
for section in sections:
|
167 |
-
if len(section) > 1: # Section has at least one finding
|
168 |
-
cleaned.append("\n".join(section))
|
169 |
-
|
170 |
-
text = "\n\n".join(cleaned).strip()
|
171 |
-
if not text:
|
172 |
-
text = "" # Return empty string if no valid findings
|
173 |
-
return text
|
174 |
|
175 |
def init_agent():
|
176 |
-
print("🔁 Initializing model...")
|
177 |
-
log_system_usage("Before Load")
|
178 |
default_tool_path = os.path.abspath("data/new_tool.json")
|
179 |
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
|
180 |
if not os.path.exists(target_tool_path):
|
181 |
shutil.copy(default_tool_path, target_tool_path)
|
182 |
-
|
183 |
agent = TxAgent(
|
184 |
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
|
185 |
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
|
@@ -191,160 +91,59 @@ def init_agent():
|
|
191 |
additional_default_tools=[],
|
192 |
)
|
193 |
agent.init_model()
|
194 |
-
log_system_usage("After Load")
|
195 |
-
print("✅ Agent Ready")
|
196 |
return agent
|
197 |
|
198 |
def create_ui(agent):
|
199 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
200 |
-
gr.Markdown("<h1 style='text-align: center;'
|
201 |
chatbot = gr.Chatbot(label="Analysis", height=600, type="messages")
|
202 |
-
file_upload = gr.File(file_types=[".
|
203 |
-
msg_input = gr.Textbox(placeholder="Ask about
|
204 |
send_btn = gr.Button("Analyze", variant="primary")
|
205 |
download_output = gr.File(label="Download Full Report")
|
206 |
|
207 |
-
def analyze(message: str, history: List[dict],
|
208 |
history.append({"role": "user", "content": message})
|
209 |
-
history.append({"role": "assistant", "content": "⏳
|
210 |
yield history, None
|
211 |
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
# Split extracted text into chunks of ~6,000 characters
|
237 |
-
chunk_size = 6000
|
238 |
-
chunks = [extracted[i:i + chunk_size] for i in range(0, len(extracted), chunk_size)]
|
239 |
-
combined_response = ""
|
240 |
-
|
241 |
-
prompt_template = """
|
242 |
-
You are a medical analysis assistant. Analyze the following patient record excerpt for clinical oversights and provide a concise, evidence-based summary in markdown format under these headings: Missed Diagnoses, Medication Conflicts, Incomplete Assessments, and Urgent Follow-up. For each finding, include:
|
243 |
-
- Clinical context (why the issue was missed or relevant details from the record).
|
244 |
-
- Potential risks if unaddressed (e.g., disease progression, adverse events).
|
245 |
-
- Actionable recommendations (e.g., tests, referrals, medication adjustments).
|
246 |
-
Output ONLY the markdown-formatted findings, with bullet points under each heading. Do NOT include reasoning, tool calls, or intermediate steps. If no issues are found in a section, state "No issues identified." Ensure the output is specific to the provided text and avoids generic responses.
|
247 |
-
|
248 |
-
Example Output:
|
249 |
-
### Missed Diagnoses
|
250 |
-
- Elevated BP noted without diagnosis. Missed due to inconsistent visits. Risks: stroke. Recommend: BP monitoring, antihypertensives.
|
251 |
-
### Medication Conflicts
|
252 |
-
- No issues identified.
|
253 |
-
### Incomplete Assessments
|
254 |
-
- Chest pain not evaluated. Time constraints likely cause. Risks: cardiac issues. Recommend: ECG, stress test.
|
255 |
-
### Urgent Follow-up
|
256 |
-
- Abnormal creatinine not addressed. Delayed lab review. Risks: renal failure. Recommend: nephrology referral.
|
257 |
-
|
258 |
-
Patient Record Excerpt (Chunk {0} of {1}):
|
259 |
-
{chunk}
|
260 |
-
|
261 |
-
### Missed Diagnoses
|
262 |
-
- ...
|
263 |
-
|
264 |
-
### Medication Conflicts
|
265 |
-
- ...
|
266 |
-
|
267 |
-
### Incomplete Assessments
|
268 |
-
- ...
|
269 |
-
|
270 |
-
### Urgent Follow-up
|
271 |
-
- ...
|
272 |
-
"""
|
273 |
-
|
274 |
-
try:
|
275 |
-
# Process each chunk and stream results in real-time
|
276 |
-
for chunk_idx, chunk in enumerate(chunks, 1):
|
277 |
-
# Update UI with chunk progress
|
278 |
-
animation = ["🔍", "📊", "🧠", "🔎"][(int(time.time() * 2) % 4)]
|
279 |
-
history.append({"role": "assistant", "content": f"Analyzing records... {animation} Chunk {chunk_idx}/{len(chunks)}"})
|
280 |
yield history, None
|
281 |
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
temperature=0.2,
|
288 |
-
max_new_tokens=1024,
|
289 |
-
max_token=4096,
|
290 |
-
call_agent=False,
|
291 |
-
conversation=[],
|
292 |
-
):
|
293 |
-
if chunk_output is None:
|
294 |
-
continue
|
295 |
-
if isinstance(chunk_output, list):
|
296 |
-
for m in chunk_output:
|
297 |
-
if hasattr(m, 'content') and m.content:
|
298 |
-
cleaned = clean_response(m.content)
|
299 |
-
if cleaned and re.search(r"###\s*(Missed Diagnoses|Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", cleaned):
|
300 |
-
chunk_response += cleaned + "\n\n"
|
301 |
-
# Update UI with partial response
|
302 |
-
if history[-1]["content"].startswith("Analyzing"):
|
303 |
-
history[-1] = {"role": "assistant", "content": f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response.strip()}"}
|
304 |
-
else:
|
305 |
-
history[-1]["content"] = f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response.strip()}"
|
306 |
-
yield history, None
|
307 |
-
elif isinstance(chunk_output, str) and chunk_output.strip():
|
308 |
-
cleaned = clean_response(chunk_output)
|
309 |
-
if cleaned and re.search(r"###\s*(Missed Diagnoses|Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", cleaned):
|
310 |
-
chunk_response += cleaned + "\n\n"
|
311 |
-
# Update UI with partial response
|
312 |
-
if history[-1]["content"].startswith("Analyzing"):
|
313 |
-
history[-1] = {"role": "assistant", "content": f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response.strip()}"}
|
314 |
-
else:
|
315 |
-
history[-1]["content"] = f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response.strip()}"
|
316 |
-
yield history, None
|
317 |
-
|
318 |
-
# Append completed chunk response to combined response
|
319 |
-
if chunk_response:
|
320 |
-
combined_response += f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response}\n"
|
321 |
-
else:
|
322 |
-
combined_response += f"--- Analysis for Chunk {chunk_idx} ---\nNo oversights identified for this chunk.\n\n"
|
323 |
-
|
324 |
-
# Finalize UI with complete response
|
325 |
-
if combined_response.strip() and not all("No oversights identified" in chunk for chunk in combined_response.split("--- Analysis for Chunk")):
|
326 |
-
history[-1]["content"] = combined_response.strip()
|
327 |
-
else:
|
328 |
-
history.append({"role": "assistant", "content": "No oversights identified in the provided records."})
|
329 |
-
|
330 |
-
# Generate report file
|
331 |
-
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
|
332 |
-
if report_path:
|
333 |
-
with open(report_path, "w", encoding="utf-8") as f:
|
334 |
-
f.write(combined_response)
|
335 |
-
yield history, report_path if report_path and os.path.exists(report_path) else None
|
336 |
-
|
337 |
-
except Exception as e:
|
338 |
-
print("🚨 ERROR:", e)
|
339 |
-
history.append({"role": "assistant", "content": f"❌ Error occurred: {str(e)}"})
|
340 |
-
yield history, None
|
341 |
|
342 |
send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
|
343 |
msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
|
344 |
return demo
|
345 |
|
346 |
if __name__ == "__main__":
|
347 |
-
print("🚀 Launching app...")
|
348 |
agent = init_agent()
|
349 |
demo = create_ui(agent)
|
350 |
demo.queue(api_open=False).launch(
|
|
|
1 |
import sys
|
2 |
import os
|
3 |
import pandas as pd
|
|
|
4 |
import json
|
5 |
import gradio as gr
|
6 |
from typing import List
|
|
|
7 |
import hashlib
|
8 |
import shutil
|
9 |
import re
|
10 |
+
from datetime import datetime
|
|
|
|
|
|
|
11 |
import time
|
12 |
|
|
|
13 |
persistent_dir = "/data/hf_cache"
|
14 |
os.makedirs(persistent_dir, exist_ok=True)
|
15 |
|
|
|
17 |
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
|
18 |
file_cache_dir = os.path.join(persistent_dir, "cache")
|
19 |
report_dir = os.path.join(persistent_dir, "reports")
|
|
|
20 |
|
21 |
+
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
|
22 |
os.makedirs(directory, exist_ok=True)
|
23 |
|
24 |
os.environ["HF_HOME"] = model_cache_dir
|
25 |
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
|
|
|
|
|
|
|
26 |
|
27 |
current_dir = os.path.dirname(os.path.abspath(__file__))
|
28 |
src_path = os.path.abspath(os.path.join(current_dir, "src"))
|
|
|
30 |
|
31 |
from txagent.txagent import TxAgent
|
32 |
|
|
|
|
|
|
|
33 |
def file_hash(path: str) -> str:
|
34 |
with open(path, "rb") as f:
|
35 |
return hashlib.md5(f.read()).hexdigest()
|
36 |
|
37 |
+
def clean_response(text: str) -> str:
|
38 |
+
text = text.encode("utf-8", "ignore").decode("utf-8")
|
39 |
+
text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
|
40 |
+
text = re.sub(r"\n{3,}", "\n\n", text)
|
41 |
+
text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
|
42 |
+
return text.strip()
|
43 |
+
|
44 |
+
def parse_excel_to_prompts(file_path: str) -> List[str]:
|
45 |
+
xl = pd.ExcelFile(file_path)
|
46 |
+
df = xl.parse(xl.sheet_names[0], header=0).fillna("")
|
47 |
+
groups = df.groupby("Booking Number")
|
48 |
+
prompts = []
|
49 |
+
for booking, group in groups:
|
50 |
+
records = []
|
51 |
+
for _, row in group.iterrows():
|
52 |
+
records.append(f"- {row['Form Name']}: {row['Form Item']} = {row['Item Response']} ({row['Interview Date']} by {row['Interviewer']})\n{row['Description']}")
|
53 |
+
record_text = "\n".join(records)
|
54 |
+
prompt = f"""
|
55 |
+
Patient Booking Number: {booking}
|
56 |
+
|
57 |
+
Instructions:
|
58 |
+
Analyze the following patient case for missed diagnoses, medication conflicts, incomplete assessments, and any urgent follow-up needed. Summarize under the markdown headings.
|
59 |
+
|
60 |
+
Data:
|
61 |
+
{record_text}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
+
### Missed Diagnoses
|
64 |
+
- ...
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
+
### Medication Conflicts
|
67 |
+
- ...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
+
### Incomplete Assessments
|
70 |
+
- ...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
+
### Urgent Follow-up
|
73 |
+
- ...
|
74 |
+
"""
|
75 |
+
prompts.append(prompt)
|
76 |
+
return prompts
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
def init_agent():
|
|
|
|
|
79 |
default_tool_path = os.path.abspath("data/new_tool.json")
|
80 |
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
|
81 |
if not os.path.exists(target_tool_path):
|
82 |
shutil.copy(default_tool_path, target_tool_path)
|
|
|
83 |
agent = TxAgent(
|
84 |
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
|
85 |
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
|
|
|
91 |
additional_default_tools=[],
|
92 |
)
|
93 |
agent.init_model()
|
|
|
|
|
94 |
return agent
|
95 |
|
96 |
def create_ui(agent):
|
97 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
98 |
+
gr.Markdown("<h1 style='text-align: center;'>\ud83e\uddfa Clinical Oversight Assistant (Excel Optimized)</h1>")
|
99 |
chatbot = gr.Chatbot(label="Analysis", height=600, type="messages")
|
100 |
+
file_upload = gr.File(file_types=[".xlsx"], file_count="single")
|
101 |
+
msg_input = gr.Textbox(placeholder="Ask about patient history...", show_label=False)
|
102 |
send_btn = gr.Button("Analyze", variant="primary")
|
103 |
download_output = gr.File(label="Download Full Report")
|
104 |
|
105 |
+
def analyze(message: str, history: List[dict], file) -> tuple:
|
106 |
history.append({"role": "user", "content": message})
|
107 |
+
history.append({"role": "assistant", "content": "⏳ Processing Excel data..."})
|
108 |
yield history, None
|
109 |
|
110 |
+
prompts = parse_excel_to_prompts(file.name)
|
111 |
+
full_output = ""
|
112 |
+
|
113 |
+
for idx, prompt in enumerate(prompts, 1):
|
114 |
+
chunk_output = ""
|
115 |
+
for result in agent.run_gradio_chat(
|
116 |
+
message=prompt,
|
117 |
+
history=[],
|
118 |
+
temperature=0.2,
|
119 |
+
max_new_tokens=1024,
|
120 |
+
max_token=4096,
|
121 |
+
call_agent=False,
|
122 |
+
conversation=[],
|
123 |
+
):
|
124 |
+
if isinstance(result, list):
|
125 |
+
for r in result:
|
126 |
+
if hasattr(r, 'content') and r.content:
|
127 |
+
chunk_output += clean_response(r.content) + "\n"
|
128 |
+
elif isinstance(result, str):
|
129 |
+
chunk_output += clean_response(result) + "\n"
|
130 |
+
if chunk_output:
|
131 |
+
output = f"--- Booking {idx} ---\n{chunk_output.strip()}\n"
|
132 |
+
history.append({"role": "assistant", "content": output})
|
133 |
+
full_output += output + "\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
yield history, None
|
135 |
|
136 |
+
file_hash_value = file_hash(file.name)
|
137 |
+
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt")
|
138 |
+
with open(report_path, "w", encoding="utf-8") as f:
|
139 |
+
f.write(full_output)
|
140 |
+
yield history, report_path if os.path.exists(report_path) else None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
142 |
send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
|
143 |
msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
|
144 |
return demo
|
145 |
|
146 |
if __name__ == "__main__":
|
|
|
147 |
agent = init_agent()
|
148 |
demo = create_ui(agent)
|
149 |
demo.queue(api_open=False).launch(
|