Update app.py
Browse files
app.py
CHANGED
@@ -1,311 +1,262 @@
|
|
1 |
import sys
|
2 |
import os
|
3 |
import pandas as pd
|
|
|
4 |
import gradio as gr
|
5 |
-
import
|
6 |
import hashlib
|
7 |
import shutil
|
|
|
8 |
from datetime import datetime
|
|
|
9 |
from collections import defaultdict
|
10 |
-
from typing import List, Dict, Tuple
|
11 |
|
12 |
-
# Configuration
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
os.environ["HF_HOME"] = MODEL_CACHE_DIR
|
21 |
-
os.environ["TRANSFORMERS_CACHE"] = MODEL_CACHE_DIR
|
22 |
|
23 |
-
# Import TxAgent after setting up environment
|
24 |
-
sys.path.append(os.path.join(WORKING_DIR, "src"))
|
25 |
from txagent.txagent import TxAgent
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
self.agent = self._initialize_agent()
|
32 |
-
|
33 |
-
def _initialize_agent(self):
|
34 |
-
"""Initialize the TxAgent with proper configuration"""
|
35 |
-
tool_path = os.path.join(WORKING_DIR, "data", "new_tool.json")
|
36 |
-
if not os.path.exists(tool_path):
|
37 |
-
raise FileNotFoundError(f"Tool file not found at {tool_path}")
|
38 |
-
|
39 |
-
return TxAgent(
|
40 |
-
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
|
41 |
-
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
|
42 |
-
tool_files_dict={"new_tool": tool_path},
|
43 |
-
force_finish=True,
|
44 |
-
enable_checker=True,
|
45 |
-
step_rag_num=4,
|
46 |
-
seed=100,
|
47 |
-
additional_default_tools=[],
|
48 |
-
)
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
}
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
'doctor': self.clean_text(row.get('Interviewer', '')),
|
76 |
-
'form': self.clean_text(row.get('Form Name', '')),
|
77 |
-
'item': self.clean_text(row.get('Form Item', '')),
|
78 |
-
'response': self.clean_text(row.get('Item Response', '')),
|
79 |
-
'notes': self.clean_text(row.get('Description', ''))
|
80 |
-
}
|
81 |
-
|
82 |
-
data['timeline'].append(entry)
|
83 |
-
data['doctors'].add(entry['doctor'])
|
84 |
-
data['all_entries'].append(entry)
|
85 |
-
|
86 |
-
form_lower = entry['form'].lower()
|
87 |
-
if 'medication' in form_lower or 'drug' in form_lower:
|
88 |
-
data['medications'][entry['item']].append(entry)
|
89 |
-
elif 'diagnosis' in form_lower:
|
90 |
-
data['diagnoses'][entry['item']].append(entry)
|
91 |
-
elif 'test' in form_lower or 'lab' in form_lower:
|
92 |
-
data['tests'][entry['item']].append(entry)
|
93 |
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
if
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
return prompts
|
127 |
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
|
|
|
|
|
|
|
|
|
|
166 |
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
return "\n".join([
|
172 |
-
"**Historical Patient Analysis**",
|
173 |
-
"Focus on LONG-TERM PATTERNS and HISTORY.",
|
174 |
-
"",
|
175 |
-
"**Key Analysis Points:**",
|
176 |
-
"- Treatment changes over time",
|
177 |
-
"- Recurring symptoms/issues",
|
178 |
-
"- Diagnostic evolution",
|
179 |
-
"- Medication history",
|
180 |
-
"",
|
181 |
-
"**Historical Timeline (condensed):**",
|
182 |
-
*[f"- {entry['date'][:7]}: {entry['form']} - {entry['response']}"
|
183 |
-
for entry in data['all_entries'][:-10]],
|
184 |
-
"",
|
185 |
-
"**Required Output Format:**",
|
186 |
-
"### Historical Patterns",
|
187 |
-
"### Treatment Evolution",
|
188 |
-
"### Chronic Issues",
|
189 |
-
"### Long-term Recommendations"
|
190 |
-
])
|
191 |
-
|
192 |
-
def _create_medication_prompt(self, data: Dict) -> str:
|
193 |
-
"""Create medication-specific prompt"""
|
194 |
-
return "\n".join([
|
195 |
-
"**Medication-Specific Analysis**",
|
196 |
-
"Focus on MEDICATION HISTORY and POTENTIAL ISSUES.",
|
197 |
-
"",
|
198 |
-
"**Medication History:**",
|
199 |
-
*[f"- {med}: " + ", ".join(
|
200 |
-
f"{e['date']}: {e['response']} (by {e['doctor']})"
|
201 |
-
for e in entries
|
202 |
-
) for med, entries in data['medications'].items()],
|
203 |
-
"",
|
204 |
-
"**Analysis Focus:**",
|
205 |
-
"- Potential interactions",
|
206 |
-
"- Dosage changes",
|
207 |
-
"- Prescriber patterns",
|
208 |
-
"- Adherence issues",
|
209 |
-
"",
|
210 |
-
"**Required Output Format:**",
|
211 |
-
"### Medication Summary",
|
212 |
-
"### Potential Issues",
|
213 |
-
"### Prescriber Patterns",
|
214 |
-
"### Recommendations"
|
215 |
-
])
|
216 |
-
|
217 |
-
def _call_agent(self, prompt: str) -> str:
|
218 |
-
"""Call TxAgent with proper error handling"""
|
219 |
-
try:
|
220 |
-
response = ""
|
221 |
-
for result in self.agent.run_gradio_chat(
|
222 |
-
message=prompt,
|
223 |
-
history=[],
|
224 |
-
temperature=0.2,
|
225 |
-
max_new_tokens=1024,
|
226 |
-
max_token=2048,
|
227 |
-
call_agent=False,
|
228 |
-
conversation=[],
|
229 |
-
):
|
230 |
-
if isinstance(result, list):
|
231 |
-
for r in result:
|
232 |
-
if hasattr(r, 'content') and r.content:
|
233 |
-
response += r.content + "\n"
|
234 |
-
elif isinstance(result, str):
|
235 |
-
response += result + "\n"
|
236 |
|
237 |
-
|
238 |
-
|
239 |
-
return f"Error in model response: {str(e)}"
|
240 |
-
|
241 |
-
def generate_report(self, analysis_results: List[str]) -> Tuple[str, str]:
|
242 |
-
"""Combine analysis results into final report"""
|
243 |
-
report = [
|
244 |
-
"# Comprehensive Patient History Analysis",
|
245 |
-
f"**Generated on**: {datetime.now().strftime('%Y-%m-%d %H:%M')}",
|
246 |
-
""
|
247 |
-
]
|
248 |
-
|
249 |
-
for result in analysis_results:
|
250 |
-
report.extend(["", "---", "", result])
|
251 |
-
|
252 |
-
report.extend([
|
253 |
-
"",
|
254 |
-
"## Overall Clinical Summary",
|
255 |
-
"This report combines analyses of:",
|
256 |
-
"- Current health status",
|
257 |
-
"- Historical patterns",
|
258 |
-
"- Medication history",
|
259 |
-
"",
|
260 |
-
"**Key Takeaways:**",
|
261 |
-
"[Generated summary of most critical findings would appear here]"
|
262 |
-
])
|
263 |
-
|
264 |
-
full_report = "\n".join(report)
|
265 |
-
|
266 |
-
# Save to file in working directory
|
267 |
-
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
268 |
-
report_filename = f"patient_report_{timestamp}.md"
|
269 |
-
report_path = os.path.join(REPORT_DIR, report_filename)
|
270 |
|
271 |
-
|
272 |
-
|
|
|
|
|
|
|
|
|
273 |
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
for prompt in prompts:
|
285 |
-
response = self._call_agent(prompt['content'])
|
286 |
-
analysis_results.append(response)
|
287 |
-
|
288 |
-
return self.generate_report(analysis_results)
|
289 |
-
|
290 |
-
except Exception as e:
|
291 |
-
return f"Error during analysis: {str(e)}", ""
|
292 |
|
293 |
-
def
|
294 |
-
|
|
|
|
|
|
|
|
|
|
|
295 |
|
296 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
297 |
gr.Markdown("# 🏥 Comprehensive Patient History Analysis")
|
298 |
|
299 |
-
|
300 |
with gr.TabItem("Analysis"):
|
301 |
with gr.Row():
|
302 |
with gr.Column(scale=1):
|
303 |
-
|
304 |
-
label="Upload Patient
|
305 |
file_types=[".xlsx"],
|
306 |
-
|
307 |
)
|
308 |
-
|
|
|
309 |
|
310 |
with gr.Column(scale=2):
|
311 |
output_display = gr.Markdown(
|
@@ -321,25 +272,96 @@ def create_interface():
|
|
321 |
gr.Markdown("""
|
322 |
## How to Use This Tool
|
323 |
|
324 |
-
1. **Upload
|
325 |
-
2. **Click Analyze
|
326 |
-
3. **Review
|
327 |
-
4. **Download
|
328 |
|
329 |
-
###
|
330 |
-
|
331 |
- Booking Number
|
|
|
|
|
332 |
- Form Name
|
333 |
-
- Form Item
|
334 |
- Item Response
|
335 |
-
- Interview Date
|
336 |
-
- Interviewer
|
337 |
- Description
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
338 |
""")
|
339 |
|
340 |
-
|
341 |
-
|
342 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
343 |
outputs=[output_display, report_download],
|
344 |
api_name="analyze"
|
345 |
)
|
@@ -348,13 +370,19 @@ def create_interface():
|
|
348 |
|
349 |
if __name__ == "__main__":
|
350 |
try:
|
351 |
-
|
352 |
-
demo
|
|
|
|
|
|
|
|
|
|
|
353 |
server_name="0.0.0.0",
|
354 |
server_port=7860,
|
355 |
show_error=True,
|
356 |
-
allowed_paths=[
|
|
|
357 |
)
|
358 |
except Exception as e:
|
359 |
-
print(f"
|
360 |
sys.exit(1)
|
|
|
1 |
import sys
|
2 |
import os
|
3 |
import pandas as pd
|
4 |
+
import json
|
5 |
import gradio as gr
|
6 |
+
from typing import List, Tuple, Dict, Any
|
7 |
import hashlib
|
8 |
import shutil
|
9 |
+
import re
|
10 |
from datetime import datetime
|
11 |
+
import time
|
12 |
from collections import defaultdict
|
|
|
13 |
|
14 |
+
# Configuration and setup
|
15 |
+
persistent_dir = "/data/hf_cache"
|
16 |
+
os.makedirs(persistent_dir, exist_ok=True)
|
17 |
+
|
18 |
+
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
|
19 |
+
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
|
20 |
+
file_cache_dir = os.path.join(persistent_dir, "cache")
|
21 |
+
report_dir = os.path.join(persistent_dir, "reports")
|
22 |
+
|
23 |
+
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
|
24 |
+
os.makedirs(directory, exist_ok=True)
|
25 |
+
|
26 |
+
os.environ["HF_HOME"] = model_cache_dir
|
27 |
+
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
|
28 |
|
29 |
+
current_dir = os.path.dirname(os.path.abspath(__file__))
|
30 |
+
src_path = os.path.abspath(os.path.join(current_dir, "src"))
|
31 |
+
sys.path.insert(0, src_path)
|
|
|
|
|
32 |
|
|
|
|
|
33 |
from txagent.txagent import TxAgent
|
34 |
|
35 |
+
# Constants
|
36 |
+
MAX_TOKENS = 32768 # TxAgent's maximum token limit
|
37 |
+
CHUNK_SIZE = 3000 # Target chunk size to stay under token limit
|
38 |
+
MAX_NEW_TOKENS = 1024
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
+
def file_hash(path: str) -> str:
|
41 |
+
"""Generate MD5 hash of file contents"""
|
42 |
+
with open(path, "rb") as f:
|
43 |
+
return hashlib.md5(f.read()).hexdigest()
|
44 |
+
|
45 |
+
def clean_response(text: str) -> str:
|
46 |
+
"""Clean and normalize text output"""
|
47 |
+
try:
|
48 |
+
text = text.encode('utf-8', 'surrogatepass').decode('utf-8')
|
49 |
+
except UnicodeError:
|
50 |
+
text = text.encode('utf-8', 'replace').decode('utf-8')
|
51 |
+
|
52 |
+
text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
|
53 |
+
text = re.sub(r"\n{3,}", "\n\n", text)
|
54 |
+
text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
|
55 |
+
return text.strip()
|
56 |
+
|
57 |
+
def estimate_tokens(text: str) -> int:
|
58 |
+
"""Approximate token count (1 token ~ 4 characters)"""
|
59 |
+
return len(text) // 4
|
60 |
+
|
61 |
+
def process_patient_data(df: pd.DataFrame) -> Dict[str, Any]:
|
62 |
+
"""Process raw patient data into structured format"""
|
63 |
+
data = {
|
64 |
+
'bookings': defaultdict(list),
|
65 |
+
'medications': defaultdict(list),
|
66 |
+
'diagnoses': defaultdict(list),
|
67 |
+
'tests': defaultdict(list),
|
68 |
+
'doctors': set(),
|
69 |
+
'timeline': []
|
70 |
+
}
|
71 |
+
|
72 |
+
# Sort by date and group by booking
|
73 |
+
df = df.sort_values('Interview Date')
|
74 |
+
for booking, group in df.groupby('Booking Number'):
|
75 |
+
for _, row in group.iterrows():
|
76 |
+
entry = {
|
77 |
+
'booking': booking,
|
78 |
+
'date': str(row['Interview Date']),
|
79 |
+
'doctor': str(row['Interviewer']),
|
80 |
+
'form': str(row['Form Name']),
|
81 |
+
'item': str(row['Form Item']),
|
82 |
+
'response': str(row['Item Response']),
|
83 |
+
'notes': str(row['Description'])
|
84 |
}
|
85 |
|
86 |
+
data['bookings'][booking].append(entry)
|
87 |
+
data['timeline'].append(entry)
|
88 |
+
data['doctors'].add(entry['doctor'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
+
# Categorize entries
|
91 |
+
form_lower = entry['form'].lower()
|
92 |
+
if 'medication' in form_lower or 'drug' in form_lower:
|
93 |
+
data['medications'][entry['item']].append(entry)
|
94 |
+
elif 'diagnosis' in form_lower:
|
95 |
+
data['diagnoses'][entry['item']].append(entry)
|
96 |
+
elif 'test' in form_lower or 'lab' in form_lower:
|
97 |
+
data['tests'][entry['item']].append(entry)
|
98 |
+
|
99 |
+
return data
|
100 |
|
101 |
+
def generate_analysis_prompt(patient_data: Dict[str, Any], booking: str) -> str:
|
102 |
+
"""Generate focused analysis prompt for a booking"""
|
103 |
+
booking_entries = patient_data['bookings'][booking]
|
104 |
+
|
105 |
+
# Build timeline string
|
106 |
+
timeline = "\n".join(
|
107 |
+
f"- {entry['date']}: {entry['form']} - {entry['item']} = {entry['response']} (by {entry['doctor']})"
|
108 |
+
for entry in booking_entries
|
109 |
+
)
|
110 |
+
|
111 |
+
# Get current medications
|
112 |
+
current_meds = []
|
113 |
+
for med, entries in patient_data['medications'].items():
|
114 |
+
if any(e['booking'] == booking for e in entries):
|
115 |
+
latest = max((e for e in entries if e['booking'] == booking), key=lambda x: x['date'])
|
116 |
+
current_meds.append(f"- {med}: {latest['response']} (as of {latest['date']})")
|
117 |
+
|
118 |
+
# Get current diagnoses
|
119 |
+
current_diags = []
|
120 |
+
for diag, entries in patient_data['diagnoses'].items():
|
121 |
+
if any(e['booking'] == booking for e in entries):
|
122 |
+
latest = max((e for e in entries if e['booking'] == booking), key=lambda x: x['date'])
|
123 |
+
current_diags.append(f"- {diag}: {latest['response']} (as of {latest['date']})")
|
124 |
+
|
125 |
+
prompt = f"""
|
126 |
+
**Comprehensive Patient Analysis - Booking {booking}**
|
|
|
|
|
127 |
|
128 |
+
**Patient Timeline:**
|
129 |
+
{timeline}
|
130 |
+
|
131 |
+
**Current Medications:**
|
132 |
+
{'\n'.join(current_meds) if current_meds else "None recorded"}
|
133 |
+
|
134 |
+
**Current Diagnoses:**
|
135 |
+
{'\n'.join(current_diags) if current_diags else "None recorded"}
|
136 |
+
|
137 |
+
**Analysis Instructions:**
|
138 |
+
1. Review the patient's complete history across all visits
|
139 |
+
2. Identify any potential missed diagnoses based on symptoms and test results
|
140 |
+
3. Check for medication conflicts or inappropriate prescriptions
|
141 |
+
4. Note any incomplete assessments or missing tests
|
142 |
+
5. Flag any urgent follow-up needs
|
143 |
+
6. Compare findings across different doctors for consistency
|
144 |
+
|
145 |
+
**Required Output Format:**
|
146 |
+
### Missed Diagnoses
|
147 |
+
[Potential diagnoses that were not identified]
|
148 |
+
|
149 |
+
### Medication Issues
|
150 |
+
[Conflicts, side effects, inappropriate prescriptions]
|
151 |
+
|
152 |
+
### Assessment Gaps
|
153 |
+
[Missing tests or incomplete evaluations]
|
154 |
+
|
155 |
+
### Follow-up Recommendations
|
156 |
+
[Urgent and non-urgent follow-up needs]
|
157 |
+
|
158 |
+
### Doctor Consistency
|
159 |
+
[Discrepancies between different providers]
|
160 |
+
"""
|
161 |
+
return prompt
|
162 |
+
|
163 |
+
def chunk_patient_data(patient_data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
164 |
+
"""Split patient data into manageable chunks"""
|
165 |
+
chunks = []
|
166 |
+
current_chunk = defaultdict(list)
|
167 |
+
current_size = 0
|
168 |
+
|
169 |
+
for booking, entries in patient_data['bookings'].items():
|
170 |
+
booking_size = sum(estimate_tokens(str(e)) for e in entries)
|
171 |
|
172 |
+
if current_size + booking_size > CHUNK_SIZE and current_chunk:
|
173 |
+
chunks.append(dict(current_chunk))
|
174 |
+
current_chunk = defaultdict(list)
|
175 |
+
current_size = 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
|
177 |
+
current_chunk['bookings'][booking] = entries
|
178 |
+
current_size += booking_size
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
|
180 |
+
# Add related data
|
181 |
+
for med, med_entries in patient_data['medications'].items():
|
182 |
+
if any(e['booking'] == booking for e in med_entries):
|
183 |
+
current_chunk['medications'][med].extend(
|
184 |
+
e for e in med_entries if e['booking'] == booking
|
185 |
+
)
|
186 |
|
187 |
+
for diag, diag_entries in patient_data['diagnoses'].items():
|
188 |
+
if any(e['booking'] == booking for e in diag_entries):
|
189 |
+
current_chunk['diagnoses'][diag].extend(
|
190 |
+
e for e in diag_entries if e['booking'] == booking
|
191 |
+
)
|
192 |
+
|
193 |
+
if current_chunk:
|
194 |
+
chunks.append(dict(current_chunk))
|
195 |
+
|
196 |
+
return chunks
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
|
198 |
+
def init_agent():
|
199 |
+
"""Initialize TxAgent with proper configuration"""
|
200 |
+
default_tool_path = os.path.abspath("data/new_tool.json")
|
201 |
+
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
|
202 |
+
|
203 |
+
if not os.path.exists(target_tool_path):
|
204 |
+
shutil.copy(default_tool_path, target_tool_path)
|
205 |
|
206 |
+
agent = TxAgent(
|
207 |
+
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
|
208 |
+
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
|
209 |
+
tool_files_dict={"new_tool": target_tool_path},
|
210 |
+
force_finish=True,
|
211 |
+
enable_checker=True,
|
212 |
+
step_rag_num=4,
|
213 |
+
seed=100,
|
214 |
+
additional_default_tools=[],
|
215 |
+
)
|
216 |
+
agent.init_model()
|
217 |
+
return agent
|
218 |
+
|
219 |
+
def analyze_with_agent(agent, prompt: str) -> str:
|
220 |
+
"""Run analysis with proper error handling"""
|
221 |
+
try:
|
222 |
+
response = ""
|
223 |
+
for result in agent.run_gradio_chat(
|
224 |
+
message=prompt,
|
225 |
+
history=[],
|
226 |
+
temperature=0.2,
|
227 |
+
max_new_tokens=MAX_NEW_TOKENS,
|
228 |
+
max_token=MAX_TOKENS,
|
229 |
+
call_agent=False,
|
230 |
+
conversation=[],
|
231 |
+
):
|
232 |
+
if isinstance(result, list):
|
233 |
+
for r in result:
|
234 |
+
if hasattr(r, 'content') and r.content:
|
235 |
+
response += clean_response(r.content) + "\n"
|
236 |
+
elif isinstance(result, str):
|
237 |
+
response += clean_response(result) + "\n"
|
238 |
+
elif hasattr(result, 'content'):
|
239 |
+
response += clean_response(result.content) + "\n"
|
240 |
+
|
241 |
+
return response.strip()
|
242 |
+
except Exception as e:
|
243 |
+
return f"Error in analysis: {str(e)}"
|
244 |
+
|
245 |
+
def create_ui(agent):
|
246 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="Patient History Analyzer") as demo:
|
247 |
gr.Markdown("# 🏥 Comprehensive Patient History Analysis")
|
248 |
|
249 |
+
-With gr.Tabs():
|
250 |
with gr.TabItem("Analysis"):
|
251 |
with gr.Row():
|
252 |
with gr.Column(scale=1):
|
253 |
+
file_upload = gr.File(
|
254 |
+
label="Upload Patient Excel File",
|
255 |
file_types=[".xlsx"],
|
256 |
+
file_count="single"
|
257 |
)
|
258 |
+
analysis_btn = gr.Button("Analyze Patient History", variant="primary")
|
259 |
+
status = gr.Markdown("Ready for analysis")
|
260 |
|
261 |
with gr.Column(scale=2):
|
262 |
output_display = gr.Markdown(
|
|
|
272 |
gr.Markdown("""
|
273 |
## How to Use This Tool
|
274 |
|
275 |
+
1. **Upload Excel File**: Patient history Excel file
|
276 |
+
2. **Click Analyze**: System will process all bookings
|
277 |
+
3. **Review Results**: Comprehensive analysis appears
|
278 |
+
4. **Download Report**: Full report with all findings
|
279 |
|
280 |
+
### Excel Requirements
|
281 |
+
Must contain these columns:
|
282 |
- Booking Number
|
283 |
+
- Interview Date
|
284 |
+
- Interviewer (Doctor)
|
285 |
- Form Name
|
286 |
+
- Form Item
|
287 |
- Item Response
|
|
|
|
|
288 |
- Description
|
289 |
+
|
290 |
+
### Analysis Includes:
|
291 |
+
- Missed diagnoses across visits
|
292 |
+
- Medication conflicts over time
|
293 |
+
- Incomplete assessments
|
294 |
+
- Doctor consistency checks
|
295 |
+
- Follow-up recommendations
|
296 |
""")
|
297 |
|
298 |
+
def analyze_patient(file) -> Tuple[str, str]:
|
299 |
+
if not file:
|
300 |
+
raise gr.Error("Please upload an Excel file first")
|
301 |
+
|
302 |
+
try:
|
303 |
+
# Process Excel file
|
304 |
+
df = pd.read_excel(file.name)
|
305 |
+
patient_data = process_patient_data(df)
|
306 |
+
|
307 |
+
# Generate and process prompts
|
308 |
+
full_report = []
|
309 |
+
bookings_processed = 0
|
310 |
+
|
311 |
+
for booking in patient_data['bookings']:
|
312 |
+
prompt = generate_analysis_prompt(patient_data, booking)
|
313 |
+
response = analyze_with_agent(agent, prompt)
|
314 |
+
|
315 |
+
if "Error in analysis" not in response:
|
316 |
+
bookings_processed += 1
|
317 |
+
full_report.append(f"## Booking {booking}\n{response}\n")
|
318 |
+
|
319 |
+
yield "\n".join(full_report), None
|
320 |
+
time.sleep(0.1) # Prevent UI freezing
|
321 |
+
|
322 |
+
# Generate overall summary
|
323 |
+
if bookings_processed > 1:
|
324 |
+
summary_prompt = f"""
|
325 |
+
**Comprehensive Patient Summary**
|
326 |
+
|
327 |
+
Analyze all bookings ({bookings_processed} total) to identify:
|
328 |
+
1. Patterns across the entire treatment history
|
329 |
+
2. Chronic issues that may have been missed
|
330 |
+
3. Medication changes over time
|
331 |
+
4. Doctor consistency across visits
|
332 |
+
5. Long-term recommendations
|
333 |
+
|
334 |
+
**Required Format:**
|
335 |
+
### Chronic Health Patterns
|
336 |
+
[Recurring issues over time]
|
337 |
+
|
338 |
+
ascopy
|
339 |
+
|
340 |
+
### Treatment Evolution
|
341 |
+
[How treatment has changed]
|
342 |
+
|
343 |
+
### Long-term Concerns
|
344 |
+
[Issues needing ongoing attention]
|
345 |
+
|
346 |
+
### Comprehensive Recommendations
|
347 |
+
[Overall care plan]
|
348 |
+
"""
|
349 |
+
summary = analyze_with_agent(agent, summary_prompt)
|
350 |
+
full_report.append(f"## Overall Patient Summary\n{summary}\n")
|
351 |
+
|
352 |
+
# Save report
|
353 |
+
report_path = os.path.join(report_dir, f"patient_report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md")
|
354 |
+
with open(report_path, 'w', encoding='utf-8') as f:
|
355 |
+
f.write("\n".join(full_report))
|
356 |
+
|
357 |
+
yield "\n".join(full_report), report_path
|
358 |
+
|
359 |
+
except Exception as e:
|
360 |
+
raise gr.Error(f"Analysis failed: {str(e)}")
|
361 |
+
|
362 |
+
analysis_btn.click(
|
363 |
+
analyze_patient,
|
364 |
+
inputs=file_upload,
|
365 |
outputs=[output_display, report_download],
|
366 |
api_name="analyze"
|
367 |
)
|
|
|
370 |
|
371 |
if __name__ == "__main__":
|
372 |
try:
|
373 |
+
agent = init_agent()
|
374 |
+
demo = create_ui(agent)
|
375 |
+
|
376 |
+
demo.queue(
|
377 |
+
api_open=False,
|
378 |
+
max_size=20
|
379 |
+
).launch(
|
380 |
server_name="0.0.0.0",
|
381 |
server_port=7860,
|
382 |
show_error=True,
|
383 |
+
allowed_paths=[report_dir],
|
384 |
+
share=False
|
385 |
)
|
386 |
except Exception as e:
|
387 |
+
print(f"Failed to launch application: {str(e)}")
|
388 |
sys.exit(1)
|