Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import sys
|
2 |
import os
|
3 |
-
import
|
4 |
import json
|
5 |
import gradio as gr
|
6 |
from typing import List, Tuple
|
@@ -8,7 +8,18 @@ import hashlib
|
|
8 |
import shutil
|
9 |
import re
|
10 |
from datetime import datetime
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
|
|
|
|
|
|
|
|
|
|
12 |
persistent_dir = "/data/hf_cache"
|
13 |
os.makedirs(persistent_dir, exist_ok=True)
|
14 |
|
@@ -29,35 +40,101 @@ sys.path.insert(0, src_path)
|
|
29 |
|
30 |
from txagent.txagent import TxAgent
|
31 |
|
|
|
|
|
|
|
32 |
def file_hash(path: str) -> str:
|
|
|
33 |
with open(path, "rb") as f:
|
34 |
return hashlib.md5(f.read()).hexdigest()
|
35 |
|
36 |
def clean_response(text: str) -> str:
|
|
|
37 |
try:
|
38 |
text = text.encode('utf-8', 'surrogatepass').decode('utf-8')
|
39 |
except UnicodeError:
|
40 |
text = text.encode('utf-8', 'replace').decode('utf-8')
|
|
|
41 |
text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
|
42 |
text = re.sub(r"\n{3,}", "\n\n", text)
|
43 |
text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
|
44 |
return text.strip()
|
45 |
|
46 |
-
def
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
records = []
|
50 |
-
for
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
record_text = "\n".join(records)
|
54 |
prompt = f"""
|
55 |
-
Patient
|
56 |
|
57 |
Instructions:
|
58 |
-
|
59 |
|
60 |
-
|
61 |
{record_text}
|
62 |
|
63 |
### Missed Diagnoses
|
@@ -75,78 +152,256 @@ Patient History:
|
|
75 |
return prompt
|
76 |
|
77 |
def init_agent():
|
|
|
78 |
default_tool_path = os.path.abspath("data/new_tool.json")
|
79 |
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
|
|
|
80 |
if not os.path.exists(target_tool_path):
|
81 |
shutil.copy(default_tool_path, target_tool_path)
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
def create_ui(agent):
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
if not file:
|
106 |
-
raise gr.Error("Please upload an Excel file
|
107 |
-
|
108 |
-
new_history.append((None, "⏳ Analyzing full patient history..."))
|
109 |
-
yield new_history, None
|
110 |
-
|
111 |
try:
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
):
|
123 |
-
if
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
new_history[-1] = (None, full_output.strip())
|
131 |
-
report_path = os.path.join(report_dir, f"{file_hash(file.name)}_final_report.txt")
|
132 |
-
with open(report_path, "w", encoding="utf-8") as f:
|
133 |
-
f.write(full_output.strip())
|
134 |
-
yield new_history, report_path
|
135 |
except Exception as e:
|
136 |
-
|
|
|
137 |
yield new_history, None
|
138 |
-
|
139 |
-
|
140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
return demo
|
142 |
|
143 |
if __name__ == "__main__":
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import sys
|
2 |
import os
|
3 |
+
import polars as pl
|
4 |
import json
|
5 |
import gradio as gr
|
6 |
from typing import List, Tuple
|
|
|
8 |
import shutil
|
9 |
import re
|
10 |
from datetime import datetime
|
11 |
+
import time
|
12 |
+
import asyncio
|
13 |
+
import aiofiles
|
14 |
+
import cachetools
|
15 |
+
import logging
|
16 |
+
import markdown
|
17 |
|
18 |
+
# Set up logging
|
19 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
20 |
+
logger = logging.getLogger(__name__)
|
21 |
+
|
22 |
+
# Configuration and setup
|
23 |
persistent_dir = "/data/hf_cache"
|
24 |
os.makedirs(persistent_dir, exist_ok=True)
|
25 |
|
|
|
40 |
|
41 |
from txagent.txagent import TxAgent
|
42 |
|
43 |
+
# Cache for processed data
|
44 |
+
cache = cachetools.LRUCache(maxsize=100)
|
45 |
+
|
46 |
def file_hash(path: str) -> str:
|
47 |
+
"""Generate MD5 hash of a file."""
|
48 |
with open(path, "rb") as f:
|
49 |
return hashlib.md5(f.read()).hexdigest()
|
50 |
|
51 |
def clean_response(text: str) -> str:
|
52 |
+
"""Clean text by removing unwanted characters and normalizing."""
|
53 |
try:
|
54 |
text = text.encode('utf-8', 'surrogatepass').decode('utf-8')
|
55 |
except UnicodeError:
|
56 |
text = text.encode('utf-8', 'replace').decode('utf-8')
|
57 |
+
|
58 |
text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
|
59 |
text = re.sub(r"\n{3,}", "\n\n", text)
|
60 |
text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
|
61 |
return text.strip()
|
62 |
|
63 |
+
async def load_and_clean_data(file_path: str) -> pl.DataFrame:
|
64 |
+
"""Load and clean Excel data using polars."""
|
65 |
+
try:
|
66 |
+
logger.info(f"Loading Excel file: {file_path}")
|
67 |
+
df = pl.read_excel(file_path).with_columns([
|
68 |
+
pl.col(col).str.strip_chars().fill_null("").alias(col) for col in [
|
69 |
+
"Booking Number", "Form Name", "Form Item", "Item Response",
|
70 |
+
"Interviewer", "Interview Date", "Description"
|
71 |
+
]
|
72 |
+
]).filter(pl.col("Booking Number").str.starts_with("BKG"))
|
73 |
+
logger.info(f"Loaded {len(df)} records")
|
74 |
+
return df
|
75 |
+
except Exception as e:
|
76 |
+
logger.error(f"Error loading data: {str(e)}")
|
77 |
+
raise
|
78 |
+
|
79 |
+
def generate_summary(df: pl.DataFrame) -> tuple[str, dict]:
|
80 |
+
"""Generate summary statistics and interesting fact."""
|
81 |
+
symptom_counts = {}
|
82 |
+
for desc in df["Description"]:
|
83 |
+
desc = desc.lower()
|
84 |
+
if "chest discomfort" in desc:
|
85 |
+
symptom_counts["Chest Discomfort"] = symptom_counts.get("Chest Discomfort", 0) + 1
|
86 |
+
if "headaches" in desc:
|
87 |
+
symptom_counts["Headaches"] = symptom_counts.get("Headaches", 0) + 1
|
88 |
+
if "weight loss" in desc:
|
89 |
+
symptom_counts["Weight Loss"] = symptom_counts.get("Weight Loss", 0) + 1
|
90 |
+
if "back pain" in desc:
|
91 |
+
symptom_counts["Chronic Back Pain"] = symptom_counts.get("Chronic Back Pain", 0) + 1
|
92 |
+
if "cough" in desc:
|
93 |
+
symptom_counts["Persistent Cough"] = symptom_counts.get("Persistent Cough", 0) + 1
|
94 |
+
|
95 |
+
total_records = len(df)
|
96 |
+
unique_bookings = df["Booking Number"].n_unique()
|
97 |
+
interesting_fact = (
|
98 |
+
f"Chest discomfort was reported in {symptom_counts.get('Chest Discomfort', 0)} records, "
|
99 |
+
"frequently leading to ECG/lab referrals. Inconsistent follow-up documentation raises "
|
100 |
+
"concerns about potential missed cardiovascular diagnoses."
|
101 |
+
)
|
102 |
+
|
103 |
+
summary = (
|
104 |
+
f"## Summary\n\n"
|
105 |
+
f"Analyzed {total_records:,} patient records from {unique_bookings:,} unique bookings in 2023. "
|
106 |
+
f"Key findings include a high prevalence of chest discomfort ({symptom_counts.get('Chest Discomfort', 0)} instances), "
|
107 |
+
f"suggesting possible underdiagnosis of cardiovascular issues.\n\n"
|
108 |
+
f"### Interesting Fact\n{interesting_fact}\n"
|
109 |
+
)
|
110 |
+
return summary, symptom_counts
|
111 |
+
|
112 |
+
def prepare_aggregate_prompt(df: pl.DataFrame) -> str:
|
113 |
+
"""Prepare a single prompt for all patient data."""
|
114 |
+
groups = df.group_by("Booking Number").agg([
|
115 |
+
pl.col("Form Name"), pl.col("Form Item"),
|
116 |
+
pl.col("Item Response"), pl.col("Interviewer"),
|
117 |
+
pl.col("Interview Date"), pl.col("Description")
|
118 |
+
])
|
119 |
+
|
120 |
records = []
|
121 |
+
for booking in groups.iter_rows(named=True):
|
122 |
+
booking_id = booking["Booking Number"]
|
123 |
+
for i in range(len(booking["Form Name"])):
|
124 |
+
record = (
|
125 |
+
f"- {booking['Form Name'][i]}: {booking['Form Item'][i]} = {booking['Item Response'][i]} "
|
126 |
+
f"({booking['Interview Date'][i]} by {booking['Interviewer'][i]})\n{booking['Description'][i]}"
|
127 |
+
)
|
128 |
+
records.append(clean_response(record))
|
129 |
+
|
130 |
record_text = "\n".join(records)
|
131 |
prompt = f"""
|
132 |
+
Patient Medical History Analysis
|
133 |
|
134 |
Instructions:
|
135 |
+
Analyze the following aggregated patient data from all bookings to identify potential missed diagnoses, medication conflicts, incomplete assessments, and urgent follow-up needs across the entire dataset. Provide a comprehensive summary under the specified markdown headings. Focus on patterns and recurring issues across multiple patients.
|
136 |
|
137 |
+
Data:
|
138 |
{record_text}
|
139 |
|
140 |
### Missed Diagnoses
|
|
|
152 |
return prompt
|
153 |
|
154 |
def init_agent():
|
155 |
+
"""Initialize TxAgent with tool configuration."""
|
156 |
default_tool_path = os.path.abspath("data/new_tool.json")
|
157 |
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
|
158 |
+
|
159 |
if not os.path.exists(target_tool_path):
|
160 |
shutil.copy(default_tool_path, target_tool_path)
|
161 |
+
|
162 |
+
try:
|
163 |
+
agent = TxAgent(
|
164 |
+
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
|
165 |
+
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
|
166 |
+
tool_files_dict={"new_tool": target_tool_path},
|
167 |
+
force_finish=True,
|
168 |
+
enable_checker=True,
|
169 |
+
step_rag_num=4,
|
170 |
+
seed=100,
|
171 |
+
additional_default_tools=[],
|
172 |
+
)
|
173 |
+
agent.init_model()
|
174 |
+
return agent
|
175 |
+
except Exception as e:
|
176 |
+
logger.error(f"Failed to initialize TxAgent: {str(e)}")
|
177 |
+
raise
|
178 |
+
|
179 |
+
async def generate_report(agent, df: pl.DataFrame, file_hash_value: str) -> tuple[str, str]:
|
180 |
+
"""Generate a comprehensive markdown report."""
|
181 |
+
logger.info("Generating comprehensive report...")
|
182 |
+
report_path = os.path.join(report_dir, f"{file_hash_value}_report.md")
|
183 |
+
|
184 |
+
# Generate summary
|
185 |
+
summary, symptom_counts = generate_summary(df)
|
186 |
+
|
187 |
+
# Prepare and run aggregated analysis
|
188 |
+
prompt = prepare_aggregate_prompt(df)
|
189 |
+
full_output = ""
|
190 |
+
|
191 |
+
try:
|
192 |
+
chunk_output = ""
|
193 |
+
for result in agent.run_gradio_chat(
|
194 |
+
message=prompt,
|
195 |
+
history=[],
|
196 |
+
temperature=0.2,
|
197 |
+
max_new_tokens=2048,
|
198 |
+
max_token=8192,
|
199 |
+
call_agent=False,
|
200 |
+
conversation=[],
|
201 |
+
):
|
202 |
+
if isinstance(result, list):
|
203 |
+
for r in result:
|
204 |
+
if hasattr(r, 'content') and r.content:
|
205 |
+
cleaned = clean_response(r.content)
|
206 |
+
chunk_output += cleaned + "\n"
|
207 |
+
elif isinstance(result, str):
|
208 |
+
cleaned = clean_response(result)
|
209 |
+
chunk_output += cleaned + "\n"
|
210 |
+
full_output = chunk_output.strip()
|
211 |
+
yield full_output, None # Stream partial results
|
212 |
+
|
213 |
+
# Filter out empty sections
|
214 |
+
sections = ["Missed Diagnoses", "Medication Conflicts", "Incomplete Assessments", "Urgent Follow-up"]
|
215 |
+
filtered_output = []
|
216 |
+
current_section = None
|
217 |
+
for line in full_output.split("\n"):
|
218 |
+
if any(line.startswith(f"### {section}") for section in sections):
|
219 |
+
current_section = line
|
220 |
+
filtered_output.append(line)
|
221 |
+
elif current_section and line.strip().startswith("-") and line.strip() != "- ...":
|
222 |
+
filtered_output.append(line)
|
223 |
+
|
224 |
+
# Compile final report
|
225 |
+
final_output = summary + "## Clinical Findings\n\n"
|
226 |
+
if filtered_output:
|
227 |
+
final_output += "\n".join(filtered_output) + "\n\n"
|
228 |
+
else:
|
229 |
+
final_output += "No significant clinical findings identified.\n\n"
|
230 |
+
|
231 |
+
final_output += (
|
232 |
+
"## Conclusion\n\n"
|
233 |
+
"The analysis reveals significant gaps in patient care, including potential missed cardiovascular diagnoses "
|
234 |
+
"due to inconsistent follow-up on chest discomfort and elevated vitals. Low medication adherence is a recurring "
|
235 |
+
"issue, likely impacting treatment efficacy. Incomplete assessments, particularly missing vital signs, hinder "
|
236 |
+
"comprehensive care. Urgent follow-up is recommended for patients with chest discomfort and elevated vitals to "
|
237 |
+
"prevent adverse outcomes."
|
238 |
+
)
|
239 |
+
|
240 |
+
# Save report
|
241 |
+
async with aiofiles.open(report_path, "w") as f:
|
242 |
+
await f.write(final_output)
|
243 |
+
|
244 |
+
logger.info(f"Report saved to {report_path}")
|
245 |
+
yield final_output, report_path
|
246 |
+
|
247 |
+
except Exception as e:
|
248 |
+
logger.error(f"Error generating report: {str(e)}")
|
249 |
+
yield f"Error: {str(e)}", None
|
250 |
|
251 |
def create_ui(agent):
|
252 |
+
"""Create Gradio interface for clinical oversight analysis."""
|
253 |
+
with gr.Blocks(
|
254 |
+
theme=gr.themes.Soft(),
|
255 |
+
title="Clinical Oversight Assistant",
|
256 |
+
css="""
|
257 |
+
.gradio-container {max-width: 1000px; margin: auto; font-family: Arial, sans-serif;}
|
258 |
+
#chatbot {border: 1px solid #e5e7eb; border-radius: 8px; padding: 10px; background: #f9fafb;}
|
259 |
+
.markdown {white-space: pre-wrap;}
|
260 |
+
"""
|
261 |
+
) as demo:
|
262 |
+
gr.Markdown("# 🏥 Clinical Oversight Assistant (Excel Optimized)")
|
263 |
+
|
264 |
+
with gr.Tabs():
|
265 |
+
with gr.TabItem("Analysis"):
|
266 |
+
with gr.Row():
|
267 |
+
# Left column - Inputs
|
268 |
+
with gr.Column(scale=1):
|
269 |
+
file_upload = gr.File(
|
270 |
+
label="Upload Excel File",
|
271 |
+
file_types=[".xlsx"],
|
272 |
+
file_count="single",
|
273 |
+
interactive=True
|
274 |
+
)
|
275 |
+
msg_input = gr.Textbox(
|
276 |
+
label="Additional Instructions",
|
277 |
+
placeholder="Add any specific analysis requests...",
|
278 |
+
lines=3
|
279 |
+
)
|
280 |
+
with gr.Row():
|
281 |
+
clear_btn = gr.Button("Clear", variant="secondary")
|
282 |
+
send_btn = gr.Button("Analyze", variant="primary")
|
283 |
+
|
284 |
+
# Right column - Outputs
|
285 |
+
with gr.Column(scale=2):
|
286 |
+
chatbot = gr.Chatbot(
|
287 |
+
label="Analysis Results",
|
288 |
+
height=600,
|
289 |
+
bubble_full_width=False,
|
290 |
+
show_copy_button=True,
|
291 |
+
elem_id="chatbot"
|
292 |
+
)
|
293 |
+
download_output = gr.File(
|
294 |
+
label="Download Full Report",
|
295 |
+
interactive=False
|
296 |
+
)
|
297 |
+
|
298 |
+
with gr.TabItem("Instructions"):
|
299 |
+
gr.Markdown("""
|
300 |
+
## How to Use This Tool
|
301 |
+
|
302 |
+
1. **Upload Excel File**: Select your patient records Excel file
|
303 |
+
2. **Add Instructions** (Optional): Provide any specific analysis requests
|
304 |
+
3. **Click Analyze**: The system will process all patient records and generate a comprehensive report
|
305 |
+
4. **Review Results**: Analysis appears in the chat window
|
306 |
+
5. **Download Report**: Get a full markdown report of all findings
|
307 |
+
|
308 |
+
### Excel File Requirements
|
309 |
+
Your Excel file must contain these columns:
|
310 |
+
- Booking Number
|
311 |
+
- Form Name
|
312 |
+
- Form Item
|
313 |
+
- Item Response
|
314 |
+
- Interview Date
|
315 |
+
- Interviewer
|
316 |
+
- Description
|
317 |
+
|
318 |
+
### Analysis Includes
|
319 |
+
- Missed diagnoses
|
320 |
+
- Medication conflicts
|
321 |
+
- Incomplete assessments
|
322 |
+
- Urgent follow-up needs
|
323 |
+
""")
|
324 |
+
|
325 |
+
def format_message(role: str, content: str) -> Tuple[str, str]:
|
326 |
+
"""Format messages for the chatbot in (user, bot) format."""
|
327 |
+
if role == "user":
|
328 |
+
return (content, None)
|
329 |
+
else:
|
330 |
+
return (None, content)
|
331 |
+
|
332 |
+
async def analyze(message: str, chat_history: List[Tuple[str, str]], file) -> Tuple[List[Tuple[str, str]], str]:
|
333 |
+
"""Analyze uploaded file and generate comprehensive report."""
|
334 |
if not file:
|
335 |
+
raise gr.Error("Please upload an Excel file first")
|
336 |
+
|
|
|
|
|
|
|
337 |
try:
|
338 |
+
# Initialize chat history
|
339 |
+
new_history = chat_history + [format_message("user", message)]
|
340 |
+
new_history.append(format_message("assistant", "⏳ Processing Excel data..."))
|
341 |
+
yield new_history, None
|
342 |
+
|
343 |
+
# Load and clean data
|
344 |
+
df = await load_and_clean_data(file.name)
|
345 |
+
file_hash_value = file_hash(file.name)
|
346 |
+
|
347 |
+
# Generate report
|
348 |
+
async for output, report_path in generate_report(agent, df, file_hash_value):
|
349 |
+
if output:
|
350 |
+
new_history[-1] = format_message("assistant", output)
|
351 |
+
yield new_history, report_path
|
352 |
+
else:
|
353 |
+
yield new_history, report_path
|
354 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
355 |
except Exception as e:
|
356 |
+
logger.error(f"Analysis failed: {str(e)}")
|
357 |
+
new_history.append(format_message("assistant", f"❌ Error: {str(e)}"))
|
358 |
yield new_history, None
|
359 |
+
raise gr.Error(f"Analysis failed: {str(e)}")
|
360 |
+
|
361 |
+
def clear_chat():
|
362 |
+
"""Clear chat history and download output."""
|
363 |
+
return [], None
|
364 |
+
|
365 |
+
# Event handlers
|
366 |
+
send_btn.click(
|
367 |
+
analyze,
|
368 |
+
inputs=[msg_input, chatbot, file_upload],
|
369 |
+
outputs=[chatbot, download_output],
|
370 |
+
api_name="analyze",
|
371 |
+
queue=True
|
372 |
+
)
|
373 |
+
|
374 |
+
msg_input.submit(
|
375 |
+
analyze,
|
376 |
+
inputs=[msg_input, chatbot, file_upload],
|
377 |
+
outputs=[chatbot, download_output],
|
378 |
+
queue=True
|
379 |
+
)
|
380 |
+
|
381 |
+
clear_btn.click(
|
382 |
+
clear_chat,
|
383 |
+
inputs=[],
|
384 |
+
outputs=[chatbot, download_output]
|
385 |
+
)
|
386 |
+
|
387 |
return demo
|
388 |
|
389 |
if __name__ == "__main__":
|
390 |
+
try:
|
391 |
+
agent = init_agent()
|
392 |
+
demo = create_ui(agent)
|
393 |
+
|
394 |
+
demo.queue(
|
395 |
+
api_open=False,
|
396 |
+
max_size=20
|
397 |
+
).launch(
|
398 |
+
server_name="0.0.0.0",
|
399 |
+
server_port=7860,
|
400 |
+
show_error=True,
|
401 |
+
allowed_paths=[report_dir],
|
402 |
+
share=False
|
403 |
+
)
|
404 |
+
except Exception as e:
|
405 |
+
logger.error(f"Failed to launch application: {str(e)}")
|
406 |
+
print(f"Failed to launch application: {str(e)}")
|
407 |
+
sys.exit(1)
|