Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,14 @@
|
|
1 |
import sys
|
2 |
import os
|
3 |
import pandas as pd
|
|
|
4 |
import gradio as gr
|
5 |
-
from typing import List, Tuple
|
|
|
|
|
6 |
import re
|
7 |
from datetime import datetime
|
8 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
9 |
-
import copy
|
10 |
|
11 |
# Setup directories
|
12 |
persistent_dir = "/data/hf_cache"
|
@@ -14,9 +16,10 @@ os.makedirs(persistent_dir, exist_ok=True)
|
|
14 |
|
15 |
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
|
16 |
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
|
|
|
17 |
report_dir = os.path.join(persistent_dir, "reports")
|
18 |
|
19 |
-
for d in [model_cache_dir, tool_cache_dir, report_dir]:
|
20 |
os.makedirs(d, exist_ok=True)
|
21 |
|
22 |
os.environ["HF_HOME"] = model_cache_dir
|
@@ -36,6 +39,9 @@ def clean_response(text: str) -> str:
|
|
36 |
text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
|
37 |
return text.strip()
|
38 |
|
|
|
|
|
|
|
39 |
def extract_text_from_excel(file_path: str) -> str:
|
40 |
all_text = []
|
41 |
xls = pd.ExcelFile(file_path)
|
@@ -46,116 +52,121 @@ def extract_text_from_excel(file_path: str) -> str:
|
|
46 |
all_text.extend(sheet_text)
|
47 |
return "\n".join(all_text)
|
48 |
|
49 |
-
def split_text_into_chunks(text: str) -> List[str]:
|
50 |
-
effective_max =
|
51 |
-
lines, chunks, curr_chunk = text.split("\n"), [], []
|
52 |
-
curr_tokens = sum(len(line.split()) for line in curr_chunk)
|
53 |
-
|
54 |
for line in lines:
|
55 |
-
|
56 |
-
if curr_tokens +
|
57 |
if curr_chunk:
|
58 |
chunks.append("\n".join(curr_chunk))
|
59 |
-
|
|
|
|
|
60 |
else:
|
61 |
curr_chunk.append(line)
|
62 |
-
curr_tokens +=
|
63 |
-
if curr_chunk:
|
64 |
chunks.append("\n".join(curr_chunk))
|
65 |
return chunks
|
66 |
|
67 |
def build_prompt_from_text(chunk: str) -> str:
|
68 |
-
return f"""
|
69 |
-
|
70 |
-
- Medication issues
|
71 |
-
- Missed opportunities
|
72 |
-
- Inconsistencies
|
73 |
-
- Follow-up recommendations
|
74 |
-
|
75 |
-
Respond with clear bullet points:
|
76 |
-
|
77 |
-
{chunk}"""
|
78 |
-
|
79 |
-
class AgentWrapper:
|
80 |
-
def __init__(self):
|
81 |
-
self.agent = None
|
82 |
-
|
83 |
-
def init_agent(self):
|
84 |
-
tool_path = os.path.join(tool_cache_dir, "new_tool.json")
|
85 |
-
if not os.path.exists(tool_path):
|
86 |
-
import shutil
|
87 |
-
shutil.copy("data/new_tool.json", tool_path)
|
88 |
-
self.agent = TxAgent(
|
89 |
-
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
|
90 |
-
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
|
91 |
-
tool_files_dict={"new_tool": tool_path},
|
92 |
-
force_finish=True,
|
93 |
-
enable_checker=True,
|
94 |
-
step_rag_num=4,
|
95 |
-
seed=100
|
96 |
-
)
|
97 |
-
self.agent.init_model()
|
98 |
-
return self.agent
|
99 |
-
|
100 |
-
def process_final_report(file, chatbot_state: List[Tuple[str, str]], agent: TxAgent):
|
101 |
-
messages = copy.deepcopy(chatbot_state) if chatbot_state else []
|
102 |
-
|
103 |
-
if file is None:
|
104 |
-
messages.append(("assistant", "❌ Please upload a valid Excel file."))
|
105 |
-
return messages, None
|
106 |
-
|
107 |
-
messages.append(("user", f"Processing Excel file: {os.path.basename(file.name)}"))
|
108 |
-
yield messages, None
|
109 |
-
|
110 |
-
try:
|
111 |
-
text = extract_text_from_excel(file.name)
|
112 |
-
chunks = split_text_into_chunks(text)
|
113 |
-
|
114 |
-
messages.append(("assistant", "🔍 Analyzing clinical data..."))
|
115 |
-
yield messages, None
|
116 |
-
|
117 |
-
full_report = []
|
118 |
-
for i, chunk in enumerate(chunks, 1):
|
119 |
-
prompt = build_prompt_from_text(chunk)
|
120 |
-
response = ""
|
121 |
-
|
122 |
-
for res in agent.run_gradio_chat(
|
123 |
-
message=prompt, history=[], temperature=0.2,
|
124 |
-
max_new_tokens=MAX_NEW_TOKENS, max_token=MAX_MODEL_TOKENS,
|
125 |
-
call_agent=False, conversation=[]
|
126 |
-
):
|
127 |
-
if isinstance(res, str):
|
128 |
-
response += res
|
129 |
-
elif hasattr(res, "content"):
|
130 |
-
response += res.content
|
131 |
-
|
132 |
-
cleaned = clean_response(response)
|
133 |
-
full_report.append(cleaned)
|
134 |
-
|
135 |
-
progress_msg = f"✅ Analyzed section {i}/{len(chunks)}"
|
136 |
-
if len(messages) > 2 and "Analyzed section" in messages[-1][1]:
|
137 |
-
messages[-1] = ("assistant", progress_msg)
|
138 |
-
else:
|
139 |
-
messages.append(("assistant", progress_msg))
|
140 |
-
yield messages, None
|
141 |
-
|
142 |
-
final_report = "## 🧠 Final Clinical Report\n\n" + "\n\n".join(full_report)
|
143 |
-
report_path = os.path.join(report_dir, f"report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md")
|
144 |
-
with open(report_path, 'w') as f:
|
145 |
-
f.write(final_report)
|
146 |
-
|
147 |
-
messages.append(("assistant", f"✅ Report generated and saved: {os.path.basename(report_path)}"))
|
148 |
-
messages.append(("assistant", final_report))
|
149 |
-
yield messages, report_path
|
150 |
-
|
151 |
-
except Exception as e:
|
152 |
-
messages.append(("assistant", f"❌ Error: {str(e)}"))
|
153 |
-
yield messages, None
|
154 |
-
|
155 |
-
def create_ui():
|
156 |
-
agent_wrapper = AgentWrapper()
|
157 |
-
agent = agent_wrapper.init_agent()
|
158 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
with gr.Blocks(css="""
|
160 |
body {
|
161 |
background: #10141f;
|
@@ -192,39 +203,33 @@ def create_ui():
|
|
192 |
background: linear-gradient(135deg, #37b6e9, #4b4ced);
|
193 |
}
|
194 |
""") as demo:
|
195 |
-
gr.Markdown("""# Clinical Reasoning Assistant
|
196 |
Upload clinical Excel records below and click **Analyze** to generate a medical summary.
|
197 |
""")
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
chatbot = gr.Chatbot(label="Chatbot", elem_classes="chatbot", type="messages")
|
204 |
report_output = gr.File(label="Download Report", visible=False)
|
205 |
-
chatbot_state = gr.State([])
|
206 |
|
207 |
-
def
|
208 |
-
|
|
|
209 |
|
210 |
analyze_btn.click(
|
211 |
-
fn=
|
212 |
inputs=[file_upload, chatbot_state],
|
213 |
-
outputs=[chatbot, report_output]
|
214 |
-
show_progress="hidden"
|
215 |
)
|
216 |
|
217 |
return demo
|
218 |
|
219 |
if __name__ == "__main__":
|
220 |
try:
|
221 |
-
|
222 |
-
demo
|
223 |
-
|
224 |
-
server_port=7860,
|
225 |
-
allowed_paths=["/data/hf_cache/reports"],
|
226 |
-
share=False
|
227 |
-
)
|
228 |
except Exception as e:
|
229 |
print(f"Error: {str(e)}")
|
230 |
-
sys.exit(1)
|
|
|
1 |
import sys
|
2 |
import os
|
3 |
import pandas as pd
|
4 |
+
import json
|
5 |
import gradio as gr
|
6 |
+
from typing import List, Tuple, Dict, Any, Union
|
7 |
+
import hashlib
|
8 |
+
import shutil
|
9 |
import re
|
10 |
from datetime import datetime
|
11 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
|
|
12 |
|
13 |
# Setup directories
|
14 |
persistent_dir = "/data/hf_cache"
|
|
|
16 |
|
17 |
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
|
18 |
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
|
19 |
+
file_cache_dir = os.path.join(persistent_dir, "cache")
|
20 |
report_dir = os.path.join(persistent_dir, "reports")
|
21 |
|
22 |
+
for d in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
|
23 |
os.makedirs(d, exist_ok=True)
|
24 |
|
25 |
os.environ["HF_HOME"] = model_cache_dir
|
|
|
39 |
text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
|
40 |
return text.strip()
|
41 |
|
42 |
+
def estimate_tokens(text: str) -> int:
|
43 |
+
return len(text) // 3.5 + 1
|
44 |
+
|
45 |
def extract_text_from_excel(file_path: str) -> str:
|
46 |
all_text = []
|
47 |
xls = pd.ExcelFile(file_path)
|
|
|
52 |
all_text.extend(sheet_text)
|
53 |
return "\n".join(all_text)
|
54 |
|
55 |
+
def split_text_into_chunks(text: str, max_tokens: int = MAX_CHUNK_TOKENS, max_chunks: int = 30) -> List[str]:
|
56 |
+
effective_max = max_tokens - PROMPT_OVERHEAD
|
57 |
+
lines, chunks, curr_chunk, curr_tokens = text.split("\n"), [], [], 0
|
|
|
|
|
58 |
for line in lines:
|
59 |
+
t = estimate_tokens(line)
|
60 |
+
if curr_tokens + t > effective_max:
|
61 |
if curr_chunk:
|
62 |
chunks.append("\n".join(curr_chunk))
|
63 |
+
if len(chunks) >= max_chunks:
|
64 |
+
break
|
65 |
+
curr_chunk, curr_tokens = [line], t
|
66 |
else:
|
67 |
curr_chunk.append(line)
|
68 |
+
curr_tokens += t
|
69 |
+
if curr_chunk and len(chunks) < max_chunks:
|
70 |
chunks.append("\n".join(curr_chunk))
|
71 |
return chunks
|
72 |
|
73 |
def build_prompt_from_text(chunk: str) -> str:
|
74 |
+
return f"""
|
75 |
+
### Unstructured Clinical Records
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
+
Analyze the following clinical notes and provide a detailed, concise summary focusing on:
|
78 |
+
- Diagnostic Patterns
|
79 |
+
- Medication Issues
|
80 |
+
- Missed Opportunities
|
81 |
+
- Inconsistencies
|
82 |
+
- Follow-up Recommendations
|
83 |
+
|
84 |
+
---
|
85 |
+
|
86 |
+
{chunk}
|
87 |
+
|
88 |
+
---
|
89 |
+
Respond in well-structured bullet points with medical reasoning.
|
90 |
+
"""
|
91 |
+
|
92 |
+
def init_agent():
|
93 |
+
tool_path = os.path.join(tool_cache_dir, "new_tool.json")
|
94 |
+
if not os.path.exists(tool_path):
|
95 |
+
shutil.copy(os.path.abspath("data/new_tool.json"), tool_path)
|
96 |
+
agent = TxAgent(
|
97 |
+
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
|
98 |
+
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
|
99 |
+
tool_files_dict={"new_tool": tool_path},
|
100 |
+
force_finish=True,
|
101 |
+
enable_checker=True,
|
102 |
+
step_rag_num=4,
|
103 |
+
seed=100
|
104 |
+
)
|
105 |
+
agent.init_model()
|
106 |
+
return agent
|
107 |
+
|
108 |
+
def process_final_report(agent, file, chatbot_state: List[Tuple[str, str]]) -> Tuple[List[Tuple[str, str]], Union[str, None], str]:
|
109 |
+
messages = chatbot_state if chatbot_state else []
|
110 |
+
if file is None or not hasattr(file, "name"):
|
111 |
+
return messages + [("assistant", "❌ Please upload a valid Excel file.")], None, ""
|
112 |
+
|
113 |
+
messages.append(("user", f"📎 Uploaded file: {os.path.basename(file.name)}"))
|
114 |
+
text = extract_text_from_excel(file.name)
|
115 |
+
chunks = split_text_into_chunks(text)
|
116 |
+
chunk_responses = [None] * len(chunks)
|
117 |
+
|
118 |
+
def analyze_chunk(i, chunk):
|
119 |
+
prompt = build_prompt_from_text(chunk)
|
120 |
+
response = ""
|
121 |
+
for res in agent.run_gradio_chat(
|
122 |
+
message=prompt, history=[], temperature=0.2,
|
123 |
+
max_new_tokens=MAX_NEW_TOKENS, max_token=MAX_MODEL_TOKENS,
|
124 |
+
call_agent=False, conversation=[]
|
125 |
+
):
|
126 |
+
if isinstance(res, str):
|
127 |
+
response += res
|
128 |
+
elif hasattr(res, "content"):
|
129 |
+
response += res.content
|
130 |
+
elif isinstance(res, list):
|
131 |
+
for r in res:
|
132 |
+
if hasattr(r, "content"):
|
133 |
+
response += r.content
|
134 |
+
return i, clean_response(response)
|
135 |
+
|
136 |
+
with ThreadPoolExecutor(max_workers=1) as executor:
|
137 |
+
futures = [executor.submit(analyze_chunk, i, c) for i, c in enumerate(chunks)]
|
138 |
+
for f in as_completed(futures):
|
139 |
+
i, result = f.result()
|
140 |
+
chunk_responses[i] = result
|
141 |
+
|
142 |
+
valid = [r for r in chunk_responses if r and not r.startswith("❌")]
|
143 |
+
if not valid:
|
144 |
+
return messages + [("assistant", "❌ No valid results found in the file.")], None, ""
|
145 |
+
|
146 |
+
summary_prompt = f"Summarize this analysis in a final structured report:\n\n" + "\n\n".join(valid)
|
147 |
+
messages.append(("assistant", "⏳ Generating the final report..."))
|
148 |
+
|
149 |
+
final_report = ""
|
150 |
+
for res in agent.run_gradio_chat(
|
151 |
+
message=summary_prompt, history=[], temperature=0.2,
|
152 |
+
max_new_tokens=MAX_NEW_TOKENS, max_token=MAX_MODEL_TOKENS,
|
153 |
+
call_agent=False, conversation=[]
|
154 |
+
):
|
155 |
+
if isinstance(res, str):
|
156 |
+
final_report += res
|
157 |
+
elif hasattr(res, "content"):
|
158 |
+
final_report += res.content
|
159 |
+
|
160 |
+
cleaned = clean_response(final_report)
|
161 |
+
messages.append(("assistant", cleaned)) # ✅ Append answer to chat
|
162 |
+
|
163 |
+
report_path = os.path.join(report_dir, f"report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md")
|
164 |
+
with open(report_path, 'w') as f:
|
165 |
+
f.write(f"# 🧠 Final Patient Report\n\n{cleaned}")
|
166 |
+
|
167 |
+
return messages, report_path, cleaned
|
168 |
+
|
169 |
+
def create_ui(agent):
|
170 |
with gr.Blocks(css="""
|
171 |
body {
|
172 |
background: #10141f;
|
|
|
203 |
background: linear-gradient(135deg, #37b6e9, #4b4ced);
|
204 |
}
|
205 |
""") as demo:
|
206 |
+
gr.Markdown("""# 🧠 Clinical Reasoning Assistant
|
207 |
Upload clinical Excel records below and click **Analyze** to generate a medical summary.
|
208 |
""")
|
209 |
+
chatbot = gr.Chatbot(label="Chatbot", elem_classes="chatbot", type="tuples")
|
210 |
+
report_output_markdown = gr.Markdown(visible=False)
|
211 |
+
file_upload = gr.File(label="Upload Excel File", file_types=[".xlsx"])
|
212 |
+
analyze_btn = gr.Button("Analyze")
|
|
|
|
|
213 |
report_output = gr.File(label="Download Report", visible=False)
|
214 |
+
chatbot_state = gr.State(value=[])
|
215 |
|
216 |
+
def update_ui(file, current_state):
|
217 |
+
messages, report_path, final_text = process_final_report(agent, file, current_state)
|
218 |
+
return messages, gr.update(visible=report_path is not None, value=report_path), messages, gr.update(visible=True, value=final_text)
|
219 |
|
220 |
analyze_btn.click(
|
221 |
+
fn=update_ui,
|
222 |
inputs=[file_upload, chatbot_state],
|
223 |
+
outputs=[chatbot, report_output, chatbot_state, report_output_markdown]
|
|
|
224 |
)
|
225 |
|
226 |
return demo
|
227 |
|
228 |
if __name__ == "__main__":
|
229 |
try:
|
230 |
+
agent = init_agent()
|
231 |
+
demo = create_ui(agent)
|
232 |
+
demo.launch(server_name="0.0.0.0", server_port=7860, allowed_paths=["/data/hf_cache/reports"], share=False)
|
|
|
|
|
|
|
|
|
233 |
except Exception as e:
|
234 |
print(f"Error: {str(e)}")
|
235 |
+
sys.exit(1)
|