File size: 11,410 Bytes
f75a23b f394b25 d184610 0fb33af f394b25 0fb33af 1244d40 d16299c 1c5bd8e d14630a d8282f1 abd27cc f6e551c d16299c f6e551c abd27cc f6e551c 4bfbcac 0fb33af f75a23b abd27cc 1244d40 7a8204e f6e551c d16299c f6e551c d16299c f6e551c 7a8204e f6e551c ad85a12 e99ba15 ad85a12 0fb33af e99ba15 ad85a12 e99ba15 ad85a12 e99ba15 ad85a12 28e1ce8 b929a03 ad85a12 b929a03 ad85a12 f6e551c d16299c e99ba15 f6e551c d16299c e99ba15 d16299c e99ba15 d16299c f6e551c d16299c 0fb33af 548e7fb e99ba15 3e386fc e99ba15 548e7fb d14630a 0fb33af abd27cc ef6f12c e99ba15 ef6f12c 7a8204e ef6f12c 7a8204e ef6f12c 6e4e750 ef6f12c 6e4e750 3e386fc ef6f12c 6e4e750 ef6f12c b929a03 ef6f12c 6e4e750 ef6f12c 6e4e750 ef6f12c 6e4e750 ef6f12c 6e4e750 ef6f12c 6032958 abd27cc ef6f12c e99ba15 0fb33af 8246b02 ef6f12c 0fb33af a71a831 55e3db0 abd27cc d8282f1 d16299c e41225f abd27cc d8282f1 abd27cc ef6f12c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
import sys
import os
import pandas as pd
import json
import gradio as gr
from typing import List, Tuple, Dict, Any, Union
import hashlib
import shutil
import re
from datetime import datetime
from concurrent.futures import ThreadPoolExecutor, as_completed
# Setup directories
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
for d in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
os.makedirs(d, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "src")))
from txagent.txagent import TxAgent
MAX_MODEL_TOKENS = 32768
MAX_CHUNK_TOKENS = 8192
MAX_NEW_TOKENS = 2048
PROMPT_OVERHEAD = 500
def clean_response(text: str) -> str:
text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
text = re.sub(r"\n{3,}", "\n\n", text)
text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
return text.strip()
def estimate_tokens(text: str) -> int:
return len(text) // 3.5 + 1
def extract_text_from_excel(file_path: str) -> str:
all_text = []
xls = pd.ExcelFile(file_path)
for sheet_name in xls.sheet_names:
df = xls.parse(sheet_name).astype(str).fillna("")
rows = df.apply(lambda row: " | ".join(row), axis=1)
sheet_text = [f"[{sheet_name}] {line}" for line in rows]
all_text.extend(sheet_text)
return "\n".join(all_text)
def split_text_into_chunks(text: str, max_tokens: int = MAX_CHUNK_TOKENS) -> List[str]:
effective_max = max_tokens - PROMPT_OVERHEAD
lines, chunks, curr_chunk, curr_tokens = text.split("\n"), [], [], 0
for line in lines:
t = estimate_tokens(line)
if curr_tokens + t > effective_max:
if curr_chunk:
chunks.append("\n".join(curr_chunk))
curr_chunk, curr_tokens = [line], t
else:
curr_chunk.append(line)
curr_tokens += t
if curr_chunk:
chunks.append("\n".join(curr_chunk))
return chunks
def build_prompt_from_text(chunk: str) -> str:
return f"""
### Unstructured Clinical Records
Analyze the following clinical notes and provide a detailed, concise summary focusing on:
- Diagnostic Patterns
- Medication Issues
- Missed Opportunities
- Inconsistencies
- Follow-up Recommendations
---
{chunk}
---
Respond in well-structured bullet points with medical reasoning.
"""
def init_agent():
tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(tool_path):
shutil.copy(os.path.abspath("data/new_tool.json"), tool_path)
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": tool_path},
force_finish=True,
enable_checker=True,
step_rag_num=4,
seed=100
)
agent.init_model()
return agent
def process_final_report(agent, file, chatbot_state: List[Dict[str, str]]) -> Tuple[List[Dict[str, str]], Union[str, None]]:
messages = chatbot_state if chatbot_state else []
if file is None or not hasattr(file, "name"):
return messages + [{"role": "assistant", "content": "β Please upload a valid Excel file."}], None
messages.append({"role": "user", "content": f"Processing Excel file: {os.path.basename(file.name)}"})
text = extract_text_from_excel(file.name)
chunks = split_text_into_chunks(text)
chunk_responses = [None] * len(chunks)
def analyze_chunk(i, chunk):
prompt = build_prompt_from_text(chunk)
response = ""
for res in agent.run_gradio_chat(message=prompt, history=[], temperature=0.2, max_new_tokens=MAX_NEW_TOKENS, max_token=MAX_MODEL_TOKENS, call_agent=False, conversation=[]):
if isinstance(res, str):
response += res
elif hasattr(res, "content"):
response += res.content
elif isinstance(res, list):
for r in res:
if hasattr(r, "content"):
response += r.content
return i, clean_response(response)
with ThreadPoolExecutor(max_workers=1) as executor:
futures = [executor.submit(analyze_chunk, i, c) for i, c in enumerate(chunks)]
for f in as_completed(futures):
i, result = f.result()
chunk_responses[i] = result
valid = [r for r in chunk_responses if r and not r.startswith("β")]
if not valid:
return messages + [{"role": "assistant", "content": "β No valid chunk results."}], None
summary_prompt = f"Summarize this analysis in a final structured report:\n\n" + "\n\n".join(valid)
messages.append({"role": "assistant", "content": "π Generating final report..."})
final_report = ""
for res in agent.run_gradio_chat(message=summary_prompt, history=[], temperature=0.2, max_new_tokens=MAX_NEW_TOKENS, max_token=MAX_MODEL_TOKENS, call_agent=False, conversation=[]):
if isinstance(res, str):
final_report += res
elif hasattr(res, "content"):
final_report += res.content
cleaned = clean_response(final_report)
report_path = os.path.join(report_dir, f"report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md")
with open(report_path, 'w') as f:
f.write(f"# π§ Final Patient Report\n\n{cleaned}")
messages.append({"role": "assistant", "content": f"π Final Report:\n\n{cleaned}"})
messages.append({"role": "assistant", "content": f"β
Report generated and saved: {os.path.basename(report_path)}"})
return messages, report_path
def create_ui(agent):
with gr.Blocks(css="""
:root {
--primary-color: #2563eb;
--secondary-color: #1e40af;
--bg-color: #f8fafc;
--text-color: #1e293b;
--user-bubble: #ffffff;
--bot-bubble: #f1f5f9;
--border-color: #e2e8f0;
}
body {
font-family: 'Inter', sans-serif;
background-color: var(--bg-color);
color: var(--text-color);
}
.gradio-container {
max-width: 800px;
margin: 0 auto;
padding: 20px;
background-color: var(--bg-color);
}
.chat-container {
display: flex;
flex-direction: column;
height: 80vh;
border: 1px solid var(--border-color);
border-radius: 12px;
overflow: hidden;
background-color: white;
}
.chat-header {
padding: 16px;
background-color: white;
border-bottom: 1px solid var(--border-color);
font-weight: 600;
font-size: 18px;
}
.chat-messages {
flex: 1;
padding: 16px;
overflow-y: auto;
background-color: var(--bg-color);
}
.message {
display: flex;
margin-bottom: 16px;
align-items: flex-start;
}
.message-avatar {
width: 36px;
height: 36px;
border-radius: 50%;
margin-right: 12px;
background-color: var(--primary-color);
color: white;
display: flex;
align-items: center;
justify-content: center;
font-weight: bold;
}
.message-content {
max-width: 80%;
}
.user-message .message-content {
margin-left: auto;
background-color: var(--user-bubble);
padding: 12px 16px;
border-radius: 18px 18px 0 18px;
box-shadow: 0 1px 2px rgba(0,0,0,0.1);
}
.bot-message .message-content {
background-color: var(--bot-bubble);
padding: 12px 16px;
border-radius: 18px 18px 18px 0;
box-shadow: 0 1px 2px rgba(0,0,0,0.1);
}
.message-time {
font-size: 12px;
color: #64748b;
margin-top: 4px;
}
.chat-input-container {
padding: 16px;
background-color: white;
border-top: 1px solid var(--border-color);
}
.file-upload {
display: flex;
gap: 8px;
margin-bottom: 12px;
}
.upload-btn {
flex: 1;
}
.analyze-btn {
background-color: var(--primary-color);
color: white;
border: none;
padding: 10px 16px;
border-radius: 8px;
cursor: pointer;
font-weight: 500;
}
.analyze-btn:hover {
background-color: var(--secondary-color);
}
.report-download {
margin-top: 12px;
padding: 12px;
background-color: var(--bot-bubble);
border-radius: 8px;
display: none;
}
""") as demo:
with gr.Column(elem_classes="chat-container"):
gr.Markdown("""<div class="chat-header">Patient History AI Assistant</div>""")
chatbot = gr.Chatbot(
elem_classes="chat-messages",
label=None,
show_label=False,
bubble_full_width=False,
avatar_images=[
"https://ui-avatars.com/api/?name=AI&background=2563eb&color=fff&size=128", # Bot avatar
None # User avatar (default)
]
)
with gr.Column(elem_classes="chat-input-container"):
with gr.Row(elem_classes="file-upload"):
file_upload = gr.File(
label="Upload Excel File",
file_types=[".xlsx"],
elem_classes="upload-btn",
scale=4
)
analyze_btn = gr.Button(
"Analyze",
elem_classes="analyze-btn",
scale=1
)
report_output = gr.File(
label="Download Report",
visible=False,
interactive=False,
elem_classes="report-download"
)
chatbot_state = gr.State(value=[])
def update_ui(file, current_state):
messages, report_path = process_final_report(agent, file, current_state)
return messages, gr.update(visible=report_path is not None, value=report_path), messages
analyze_btn.click(
fn=update_ui,
inputs=[file_upload, chatbot_state],
outputs=[chatbot, report_output, chatbot_state]
)
return demo
if __name__ == "__main__":
try:
agent = init_agent()
demo = create_ui(agent)
demo.launch(server_name="0.0.0.0", server_port=7860, allowed_paths=["/data/hf_cache/reports"], share=False)
except Exception as e:
print(f"Error: {str(e)}")
sys.exit(1) |