Update app.py
Browse files
app.py
CHANGED
@@ -11,7 +11,7 @@ from datetime import datetime
|
|
11 |
import time
|
12 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
13 |
|
14 |
-
#
|
15 |
persistent_dir = "/data/hf_cache"
|
16 |
os.makedirs(persistent_dir, exist_ok=True)
|
17 |
|
@@ -38,10 +38,6 @@ MAX_NEW_TOKENS = 2048
|
|
38 |
PROMPT_OVERHEAD = 500
|
39 |
|
40 |
def clean_response(text: str) -> str:
|
41 |
-
try:
|
42 |
-
text = text.encode('utf-8', 'surrogatepass').decode('utf-8')
|
43 |
-
except UnicodeError:
|
44 |
-
text = text.encode('utf-8', 'replace').decode('utf-8')
|
45 |
text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
|
46 |
text = re.sub(r"\n{3,}", "\n\n", text)
|
47 |
text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
|
@@ -52,35 +48,28 @@ def estimate_tokens(text: str) -> int:
|
|
52 |
|
53 |
def extract_text_from_excel(file_path: str) -> str:
|
54 |
all_text = []
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
sheet_text = [f"[{sheet_name}] {line}" for line in rows]
|
62 |
-
all_text.extend(sheet_text)
|
63 |
-
except Exception as e:
|
64 |
-
raise ValueError(f"Failed to extract text from Excel file: {str(e)}")
|
65 |
return "\n".join(all_text)
|
66 |
|
67 |
def split_text_into_chunks(text: str, max_tokens: int = MAX_CHUNK_TOKENS) -> List[str]:
|
68 |
-
|
69 |
-
|
70 |
-
raise ValueError("Effective max tokens must be positive.")
|
71 |
-
lines = text.split("\n")
|
72 |
-
chunks, current_chunk, current_tokens = [], [], 0
|
73 |
for line in lines:
|
74 |
-
|
75 |
-
if
|
76 |
-
if
|
77 |
-
chunks.append("\n".join(
|
78 |
-
|
79 |
else:
|
80 |
-
|
81 |
-
|
82 |
-
if
|
83 |
-
chunks.append("\n".join(
|
84 |
return chunks
|
85 |
|
86 |
def build_prompt_from_text(chunk: str) -> str:
|
@@ -99,128 +88,86 @@ Analyze the following clinical notes and provide a detailed, concise summary foc
|
|
99 |
{chunk}
|
100 |
|
101 |
---
|
|
|
102 |
Respond in well-structured bullet points with medical reasoning.
|
103 |
"""
|
104 |
|
105 |
def init_agent():
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
shutil.copy(default_tool_path, target_tool_path)
|
110 |
agent = TxAgent(
|
111 |
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
|
112 |
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
|
113 |
-
tool_files_dict={"new_tool":
|
114 |
force_finish=True,
|
115 |
enable_checker=True,
|
116 |
step_rag_num=4,
|
117 |
-
seed=100
|
118 |
-
additional_default_tools=[]
|
119 |
)
|
120 |
agent.init_model()
|
121 |
return agent
|
122 |
|
123 |
def process_final_report(agent, file, chatbot_state: List[Dict[str, str]]) -> Tuple[List[Dict[str, str]], Union[str, None]]:
|
124 |
messages = chatbot_state if chatbot_state else []
|
125 |
-
report_path = None
|
126 |
-
|
127 |
if file is None or not hasattr(file, "name"):
|
128 |
-
messages
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
for
|
145 |
-
message=prompt,
|
146 |
-
history=[],
|
147 |
-
temperature=0.2,
|
148 |
-
max_new_tokens=MAX_NEW_TOKENS,
|
149 |
-
max_token=MAX_MODEL_TOKENS,
|
150 |
-
call_agent=False,
|
151 |
-
conversation=[],
|
152 |
-
):
|
153 |
-
if isinstance(result, str):
|
154 |
-
response += result
|
155 |
-
elif isinstance(result, list):
|
156 |
-
for r in result:
|
157 |
-
if hasattr(r, "content"):
|
158 |
-
response += r.content
|
159 |
-
elif hasattr(result, "content"):
|
160 |
-
response += result.content
|
161 |
-
except Exception as e:
|
162 |
-
return index, f"❌ Error analyzing chunk {index+1}: {str(e)}"
|
163 |
-
return index, clean_response(response)
|
164 |
-
|
165 |
-
with ThreadPoolExecutor(max_workers=1) as executor:
|
166 |
-
futures = [executor.submit(analyze_chunk, i, chunk) for i, chunk in enumerate(chunks)]
|
167 |
-
for future in as_completed(futures):
|
168 |
-
i, result = future.result()
|
169 |
-
chunk_responses[i] = result
|
170 |
-
if result.startswith("❌"):
|
171 |
-
messages.append({"role": "assistant", "content": result})
|
172 |
-
|
173 |
-
valid_responses = [res for res in chunk_responses if not res.startswith("❌")]
|
174 |
-
if not valid_responses:
|
175 |
-
messages.append({"role": "assistant", "content": "❌ No valid chunk responses to summarize."})
|
176 |
-
return messages, report_path
|
177 |
-
|
178 |
-
summary = "\n\n".join(valid_responses)
|
179 |
-
final_prompt = f"Provide a structured, consolidated clinical analysis from these results:\n\n{summary}"
|
180 |
-
messages.append({"role": "assistant", "content": "📊 Generating final report..."})
|
181 |
-
|
182 |
-
final_report_text = ""
|
183 |
-
for result in agent.run_gradio_chat(
|
184 |
-
message=final_prompt,
|
185 |
-
history=[],
|
186 |
-
temperature=0.2,
|
187 |
-
max_new_tokens=MAX_NEW_TOKENS,
|
188 |
-
max_token=MAX_MODEL_TOKENS,
|
189 |
-
call_agent=False,
|
190 |
-
conversation=[],
|
191 |
-
):
|
192 |
-
if isinstance(result, str):
|
193 |
-
final_report_text += result
|
194 |
-
elif isinstance(result, list):
|
195 |
-
for r in result:
|
196 |
if hasattr(r, "content"):
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
return messages, report_path
|
213 |
|
214 |
def create_ui(agent):
|
215 |
-
with gr.Blocks(css
|
216 |
html, body, .gradio-container {
|
217 |
height: 100vh;
|
218 |
-
width: 100vw;
|
219 |
-
margin: 0;
|
220 |
-
padding: 0;
|
221 |
-
font-family: 'Inter', sans-serif;
|
222 |
background-color: #111827;
|
223 |
color: #e5e7eb;
|
|
|
224 |
}
|
225 |
.gr-button.primary {
|
226 |
background: #2563eb;
|
@@ -234,30 +181,33 @@ def create_ui(agent):
|
|
234 |
}
|
235 |
.gr-chatbot {
|
236 |
background-color: #1f2937;
|
237 |
-
|
238 |
border-radius: 10px;
|
239 |
padding: 1rem;
|
240 |
-
border: 1px solid #374151;
|
241 |
}
|
242 |
-
.gr-
|
243 |
background-color: #1f2937;
|
244 |
-
border-radius: 10px;
|
245 |
-
box-shadow: 0 0 10px rgba(0,0,0,0.2);
|
246 |
border: 1px solid #374151;
|
|
|
247 |
}
|
248 |
-
""") as demo:
|
249 |
-
gr.Markdown("""
|
250 |
-
<h2 style='color:#60a5fa'>🩺 Patient History AI Assistant</h2>
|
251 |
-
<p style='color:#cbd5e1'>Upload a clinical Excel file and receive a structured diagnostic summary.</p>
|
252 |
-
""")
|
253 |
-
|
254 |
with gr.Row():
|
255 |
with gr.Column(scale=3):
|
256 |
-
chatbot = gr.Chatbot(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
257 |
with gr.Column(scale=1):
|
258 |
-
|
259 |
-
|
260 |
-
|
|
|
261 |
|
262 |
chatbot_state = gr.State(value=[])
|
263 |
|
@@ -269,11 +219,11 @@ def create_ui(agent):
|
|
269 |
|
270 |
return demo
|
271 |
|
272 |
-
if __name__ == "__main__":
|
273 |
try:
|
274 |
agent = init_agent()
|
275 |
demo = create_ui(agent)
|
276 |
-
demo.launch(server_name
|
277 |
except Exception as e:
|
278 |
-
print(f"Error: {str(e)}")
|
279 |
sys.exit(1)
|
|
|
11 |
import time
|
12 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
13 |
|
14 |
+
# Setup paths
|
15 |
persistent_dir = "/data/hf_cache"
|
16 |
os.makedirs(persistent_dir, exist_ok=True)
|
17 |
|
|
|
38 |
PROMPT_OVERHEAD = 500
|
39 |
|
40 |
def clean_response(text: str) -> str:
|
|
|
|
|
|
|
|
|
41 |
text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
|
42 |
text = re.sub(r"\n{3,}", "\n\n", text)
|
43 |
text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
|
|
|
48 |
|
49 |
def extract_text_from_excel(file_path: str) -> str:
|
50 |
all_text = []
|
51 |
+
xls = pd.ExcelFile(file_path)
|
52 |
+
for sheet_name in xls.sheet_names:
|
53 |
+
df = xls.parse(sheet_name).astype(str).fillna("")
|
54 |
+
rows = df.apply(lambda row: " | ".join(row), axis=1)
|
55 |
+
sheet_text = [f"[{sheet_name}] {line}" for line in rows]
|
56 |
+
all_text.extend(sheet_text)
|
|
|
|
|
|
|
|
|
57 |
return "\n".join(all_text)
|
58 |
|
59 |
def split_text_into_chunks(text: str, max_tokens: int = MAX_CHUNK_TOKENS) -> List[str]:
|
60 |
+
effective_max = max_tokens - PROMPT_OVERHEAD
|
61 |
+
lines, chunks, curr_chunk, curr_tokens = text.split("\n"), [], [], 0
|
|
|
|
|
|
|
62 |
for line in lines:
|
63 |
+
t = estimate_tokens(line)
|
64 |
+
if curr_tokens + t > effective_max:
|
65 |
+
if curr_chunk:
|
66 |
+
chunks.append("\n".join(curr_chunk))
|
67 |
+
curr_chunk, curr_tokens = [line], t
|
68 |
else:
|
69 |
+
curr_chunk.append(line)
|
70 |
+
curr_tokens += t
|
71 |
+
if curr_chunk:
|
72 |
+
chunks.append("\n".join(curr_chunk))
|
73 |
return chunks
|
74 |
|
75 |
def build_prompt_from_text(chunk: str) -> str:
|
|
|
88 |
{chunk}
|
89 |
|
90 |
---
|
91 |
+
|
92 |
Respond in well-structured bullet points with medical reasoning.
|
93 |
"""
|
94 |
|
95 |
def init_agent():
|
96 |
+
tool_path = os.path.join(tool_cache_dir, "new_tool.json")
|
97 |
+
if not os.path.exists(tool_path):
|
98 |
+
shutil.copy(os.path.abspath("data/new_tool.json"), tool_path)
|
|
|
99 |
agent = TxAgent(
|
100 |
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
|
101 |
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
|
102 |
+
tool_files_dict={"new_tool": tool_path},
|
103 |
force_finish=True,
|
104 |
enable_checker=True,
|
105 |
step_rag_num=4,
|
106 |
+
seed=100
|
|
|
107 |
)
|
108 |
agent.init_model()
|
109 |
return agent
|
110 |
|
111 |
def process_final_report(agent, file, chatbot_state: List[Dict[str, str]]) -> Tuple[List[Dict[str, str]], Union[str, None]]:
|
112 |
messages = chatbot_state if chatbot_state else []
|
|
|
|
|
113 |
if file is None or not hasattr(file, "name"):
|
114 |
+
return messages + [{"role": "assistant", "content": "❌ Please upload a valid Excel file."}], None
|
115 |
+
|
116 |
+
messages.append({"role": "user", "content": f"Processing Excel file: {os.path.basename(file.name)}"})
|
117 |
+
text = extract_text_from_excel(file.name)
|
118 |
+
chunks = split_text_into_chunks(text)
|
119 |
+
chunk_responses = [None] * len(chunks)
|
120 |
+
|
121 |
+
def analyze_chunk(i, chunk):
|
122 |
+
prompt = build_prompt_from_text(chunk)
|
123 |
+
response = ""
|
124 |
+
for res in agent.run_gradio_chat(message=prompt, history=[], temperature=0.2, max_new_tokens=MAX_NEW_TOKENS, max_token=MAX_MODEL_TOKENS, call_agent=False, conversation=[]):
|
125 |
+
if isinstance(res, str):
|
126 |
+
response += res
|
127 |
+
elif hasattr(res, "content"):
|
128 |
+
response += res.content
|
129 |
+
elif isinstance(res, list):
|
130 |
+
for r in res:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
if hasattr(r, "content"):
|
132 |
+
response += r.content
|
133 |
+
return i, clean_response(response)
|
134 |
+
|
135 |
+
with ThreadPoolExecutor(max_workers=1) as executor:
|
136 |
+
futures = [executor.submit(analyze_chunk, i, c) for i, c in enumerate(chunks)]
|
137 |
+
for f in as_completed(futures):
|
138 |
+
i, result = f.result()
|
139 |
+
chunk_responses[i] = result
|
140 |
+
|
141 |
+
valid = [r for r in chunk_responses if r and not r.startswith("❌")]
|
142 |
+
if not valid:
|
143 |
+
return messages + [{"role": "assistant", "content": "❌ No valid chunk results."}], None
|
144 |
+
|
145 |
+
summary_prompt = f"Summarize this analysis in a final structured report:\n\n" + "\n\n".join(valid)
|
146 |
+
messages.append({"role": "assistant", "content": "📊 Generating final report..."})
|
147 |
+
|
148 |
+
final_report = ""
|
149 |
+
for res in agent.run_gradio_chat(message=summary_prompt, history=[], temperature=0.2, max_new_tokens=MAX_NEW_TOKENS, max_token=MAX_MODEL_TOKENS, call_agent=False, conversation=[]):
|
150 |
+
if isinstance(res, str):
|
151 |
+
final_report += res
|
152 |
+
elif hasattr(res, "content"):
|
153 |
+
final_report += res.content
|
154 |
+
|
155 |
+
cleaned = clean_response(final_report)
|
156 |
+
report_path = os.path.join(report_dir, f"report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md")
|
157 |
+
with open(report_path, 'w') as f:
|
158 |
+
f.write(f"# 🧠 Final Patient Report\n\n{cleaned}")
|
159 |
+
|
160 |
+
messages.append({"role": "assistant", "content": f"📊 Final Report:\n\n{cleaned}"})
|
161 |
+
messages.append({"role": "assistant", "content": f"✅ Report generated and saved: {os.path.basename(report_path)}"})
|
162 |
return messages, report_path
|
163 |
|
164 |
def create_ui(agent):
|
165 |
+
with gr.Blocks(css=\"\"\"
|
166 |
html, body, .gradio-container {
|
167 |
height: 100vh;
|
|
|
|
|
|
|
|
|
168 |
background-color: #111827;
|
169 |
color: #e5e7eb;
|
170 |
+
font-family: 'Inter', sans-serif;
|
171 |
}
|
172 |
.gr-button.primary {
|
173 |
background: #2563eb;
|
|
|
181 |
}
|
182 |
.gr-chatbot {
|
183 |
background-color: #1f2937;
|
184 |
+
border: 1px solid #374151;
|
185 |
border-radius: 10px;
|
186 |
padding: 1rem;
|
|
|
187 |
}
|
188 |
+
.gr-file-upload {
|
189 |
background-color: #1f2937;
|
|
|
|
|
190 |
border: 1px solid #374151;
|
191 |
+
border-radius: 8px;
|
192 |
}
|
193 |
+
\"\"\") as demo:
|
194 |
+
gr.Markdown(\"\"\"<h2 style='color:#60a5fa'>🩺 Patient History AI Assistant</h2><p>Upload a clinical Excel file and receive a structured diagnostic summary.</p>\"\"\")
|
|
|
|
|
|
|
|
|
195 |
with gr.Row():
|
196 |
with gr.Column(scale=3):
|
197 |
+
chatbot = gr.Chatbot(
|
198 |
+
label=\"Clinical Assistant\",
|
199 |
+
height=700,
|
200 |
+
type=\"messages\",
|
201 |
+
avatar_images=[
|
202 |
+
\"https://ui-avatars.com/api/?name=AI&background=2563eb&color=fff&size=128\",
|
203 |
+
\"https://ui-avatars.com/api/?name=You&background=374151&color=fff&size=128\"
|
204 |
+
]
|
205 |
+
)
|
206 |
with gr.Column(scale=1):
|
207 |
+
with gr.Row():
|
208 |
+
file_upload = gr.File(label=\"\", file_types=[\".xlsx\"], elem_id=\"upload-btn\")
|
209 |
+
analyze_btn = gr.Button(\"🧠 Analyze\", variant=\"primary\")
|
210 |
+
report_output = gr.File(label=\"Download Report\", visible=False, interactive=False)
|
211 |
|
212 |
chatbot_state = gr.State(value=[])
|
213 |
|
|
|
219 |
|
220 |
return demo
|
221 |
|
222 |
+
if __name__ == \"__main__\":
|
223 |
try:
|
224 |
agent = init_agent()
|
225 |
demo = create_ui(agent)
|
226 |
+
demo.launch(server_name=\"0.0.0.0\", server_port=7860, allowed_paths=[\"/data/hf_cache/reports\"], share=False)
|
227 |
except Exception as e:
|
228 |
+
print(f\"Error: {str(e)}\")
|
229 |
sys.exit(1)
|