Update app.py
Browse files
app.py
CHANGED
@@ -2,12 +2,11 @@ import sys
|
|
2 |
import os
|
3 |
import pandas as pd
|
4 |
import gradio as gr
|
5 |
-
from typing import List, Tuple, Dict, Any, Union
|
6 |
import shutil
|
7 |
import re
|
8 |
from datetime import datetime
|
9 |
import time
|
10 |
-
from transformers import AutoTokenizer
|
11 |
import asyncio
|
12 |
import logging
|
13 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
@@ -33,22 +32,15 @@ sys.path.insert(0, src_path)
|
|
33 |
|
34 |
from txagent.txagent import TxAgent
|
35 |
|
36 |
-
#
|
37 |
MAX_MODEL_TOKENS = 131072 # TxAgent's max token limit
|
38 |
MAX_CHUNK_TOKENS = 32768 # Larger chunks to reduce number of chunks
|
39 |
MAX_NEW_TOKENS = 512 # Optimized for fast generation
|
40 |
PROMPT_OVERHEAD = 500 # Estimated tokens for prompt template
|
41 |
MAX_CONCURRENT = 8 # High concurrency for A100 80GB
|
42 |
|
43 |
-
# Initialize tokenizer for precise token counting
|
44 |
-
try:
|
45 |
-
tokenizer = AutoTokenizer.from_pretrained("mims-harvard/TxAgent-T1-Llama-3.1-8B")
|
46 |
-
except Exception as e:
|
47 |
-
print(f"Warning: Could not load tokenizer, falling back to heuristic: {str(e)}")
|
48 |
-
tokenizer = None
|
49 |
-
|
50 |
# Setup logging
|
51 |
-
logging.basicConfig(level=logging.INFO, format=
|
52 |
logger = logging.getLogger(__name__)
|
53 |
|
54 |
def clean_response(text: str) -> str:
|
@@ -62,13 +54,9 @@ def clean_response(text: str) -> str:
|
|
62 |
return text.strip()
|
63 |
|
64 |
def estimate_tokens(text: str) -> int:
|
65 |
-
|
66 |
-
if tokenizer:
|
67 |
-
return len(tokenizer.encode(text, add_special_tokens=False))
|
68 |
-
return len(text) // 3.5 + 1
|
69 |
|
70 |
def extract_text_from_excel(file_path: str) -> str:
|
71 |
-
"""Extract text from all sheets in an Excel file."""
|
72 |
all_text = []
|
73 |
try:
|
74 |
xls = pd.ExcelFile(file_path)
|
@@ -79,15 +67,16 @@ def extract_text_from_excel(file_path: str) -> str:
|
|
79 |
sheet_text = [f"[{sheet_name}] {line}" for line in rows]
|
80 |
all_text.extend(sheet_text)
|
81 |
except Exception as e:
|
82 |
-
|
|
|
83 |
return "\n".join(all_text)
|
84 |
|
85 |
-
def split_text_into_chunks(text: str
|
86 |
-
"""Split text into chunks
|
87 |
-
|
88 |
-
if
|
89 |
-
raise ValueError(
|
90 |
-
|
91 |
lines = text.split("\n")
|
92 |
chunks = []
|
93 |
current_chunk = []
|
@@ -95,7 +84,7 @@ def split_text_into_chunks(text: str, max_tokens: int = MAX_CHUNK_TOKENS) -> Lis
|
|
95 |
|
96 |
for line in lines:
|
97 |
line_tokens = estimate_tokens(line)
|
98 |
-
if current_tokens + line_tokens >
|
99 |
if current_chunk:
|
100 |
chunks.append("\n".join(current_chunk))
|
101 |
current_chunk = [line]
|
@@ -106,11 +95,11 @@ def split_text_into_chunks(text: str, max_tokens: int = MAX_CHUNK_TOKENS) -> Lis
|
|
106 |
|
107 |
if current_chunk:
|
108 |
chunks.append("\n".join(current_chunk))
|
109 |
-
|
|
|
110 |
return chunks
|
111 |
|
112 |
def build_prompt_from_text(chunk: str) -> str:
|
113 |
-
"""Build a prompt for analyzing a chunk of clinical data."""
|
114 |
return f"""
|
115 |
### Unstructured Clinical Records
|
116 |
|
@@ -122,7 +111,7 @@ Here is the extracted content chunk:
|
|
122 |
|
123 |
{chunk}
|
124 |
|
125 |
-
Please analyze the above and provide:
|
126 |
- Diagnostic Patterns
|
127 |
- Medication Issues
|
128 |
- Missed Opportunities
|
@@ -131,7 +120,6 @@ Please analyze the above and provide:
|
|
131 |
"""
|
132 |
|
133 |
def init_agent():
|
134 |
-
"""Initialize the TxAgent with optimized vLLM settings for A100 80GB."""
|
135 |
default_tool_path = os.path.abspath("data/new_tool.json")
|
136 |
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
|
137 |
|
@@ -146,24 +134,23 @@ def init_agent():
|
|
146 |
enable_checker=True,
|
147 |
step_rag_num=4,
|
148 |
seed=100,
|
149 |
-
additional_default_tools=[]
|
|
|
150 |
)
|
151 |
agent.init_model()
|
152 |
return agent
|
153 |
|
154 |
-
async def process_chunk(agent, chunk: str,
|
155 |
-
"""Process a single chunk
|
156 |
-
logger.info(f"Processing chunk {chunk_index+1}/{total_chunks}")
|
157 |
-
prompt = build_prompt_from_text(chunk)
|
158 |
-
prompt_tokens = estimate_tokens(prompt)
|
159 |
-
|
160 |
-
if prompt_tokens > MAX_MODEL_TOKENS:
|
161 |
-
error_msg = f"β Chunk {chunk_index+1} prompt too long ({prompt_tokens} tokens). Skipping..."
|
162 |
-
logger.warning(error_msg)
|
163 |
-
return chunk_index, "", error_msg
|
164 |
-
|
165 |
-
response = ""
|
166 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
for result in agent.run_gradio_chat(
|
168 |
message=prompt,
|
169 |
history=[],
|
@@ -181,205 +168,139 @@ async def process_chunk(agent, chunk: str, chunk_index: int, total_chunks: int)
|
|
181 |
for r in result:
|
182 |
if hasattr(r, "content"):
|
183 |
response += r.content
|
184 |
-
|
185 |
-
|
186 |
-
except Exception as e:
|
187 |
-
status = f"β Error analyzing chunk {chunk_index+1}: {str(e)}"
|
188 |
-
logger.error(status)
|
189 |
-
response = ""
|
190 |
|
191 |
-
|
|
|
|
|
192 |
|
193 |
-
async def
|
194 |
-
"""Process the
|
195 |
-
messages =
|
196 |
report_path = None
|
197 |
-
|
198 |
-
if file is None or not hasattr(file, "name"):
|
199 |
-
messages.append({"role": "assistant", "content": "β Please upload a valid Excel file before analyzing."})
|
200 |
-
return messages, report_path
|
201 |
-
|
202 |
try:
|
203 |
-
|
204 |
-
messages.append({"role": "
|
205 |
-
|
206 |
-
|
|
|
|
|
207 |
start_time = time.time()
|
208 |
-
|
209 |
-
chunks = split_text_into_chunks(
|
210 |
-
|
211 |
-
|
|
|
|
|
212 |
chunk_responses = [None] * len(chunks)
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
]
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
# Filter out empty responses
|
232 |
-
chunk_responses = [r for r in chunk_responses if r]
|
233 |
-
if not chunk_responses:
|
234 |
-
messages.append({"role": "assistant", "content": "β No valid chunk responses to summarize."})
|
235 |
-
return messages, report_path
|
236 |
-
|
237 |
-
# Summarize chunk responses incrementally
|
238 |
-
summary = ""
|
239 |
-
current_summary_tokens = 0
|
240 |
-
for i, response in enumerate(chunk_responses):
|
241 |
-
response_tokens = estimate_tokens(response)
|
242 |
-
if current_summary_tokens + response_tokens > MAX_MODEL_TOKENS - PROMPT_OVERHEAD - MAX_NEW_TOKENS:
|
243 |
-
summary_prompt = f"Summarize the following analysis:\n\n{summary}\n\nProvide a concise summary."
|
244 |
-
summary_response = ""
|
245 |
-
try:
|
246 |
-
for result in agent.run_gradio_chat(
|
247 |
-
message=summary_prompt,
|
248 |
-
history=[],
|
249 |
-
temperature=0.2,
|
250 |
-
max_new_tokens=MAX_NEW_TOKENS,
|
251 |
-
max_token=MAX_MODEL_TOKENS,
|
252 |
-
call_agent=False,
|
253 |
-
conversation=[],
|
254 |
-
):
|
255 |
-
if isinstance(result, str):
|
256 |
-
summary_response += result
|
257 |
-
elif hasattr(result, "content"):
|
258 |
-
summary_response += result.content
|
259 |
-
elif isinstance(result, list):
|
260 |
-
for r in result:
|
261 |
-
if hasattr(r, "content"):
|
262 |
-
summary_response += r.content
|
263 |
-
summary = clean_response(summary_response)
|
264 |
-
current_summary_tokens = estimate_tokens(summary)
|
265 |
-
except Exception as e:
|
266 |
-
messages.append({"role": "assistant", "content": f"β Error summarizing intermediate results: {str(e)}"})
|
267 |
-
return messages, report_path
|
268 |
-
|
269 |
-
summary += f"\n\n### Chunk {i+1} Analysis\n{response}"
|
270 |
-
current_summary_tokens += response_tokens
|
271 |
-
|
272 |
-
# Final summarization
|
273 |
-
final_prompt = f"Summarize the key findings from the following analyses:\n\n{summary}"
|
274 |
messages.append({"role": "assistant", "content": "π Generating final report..."})
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
messages
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
# Save the report
|
303 |
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
|
304 |
report_path = os.path.join(report_dir, f"report_{timestamp}.md")
|
305 |
|
306 |
with open(report_path, 'w') as f:
|
307 |
f.write(final_report)
|
308 |
-
|
309 |
-
messages.append({"role": "assistant", "content": f"β
Report
|
310 |
-
|
311 |
-
|
312 |
-
return messages, report_path
|
313 |
-
|
314 |
except Exception as e:
|
315 |
-
messages.append({"role": "assistant", "content": f"β Error processing file: {str(e)}"})
|
316 |
logger.error(f"Processing failed: {str(e)}")
|
317 |
-
|
|
|
318 |
|
319 |
-
|
320 |
-
"""Create the Gradio
|
321 |
-
with gr.Blocks(title="
|
322 |
-
gr.Markdown("## π₯
|
323 |
|
324 |
with gr.Row():
|
325 |
with gr.Column(scale=3):
|
326 |
chatbot = gr.Chatbot(
|
327 |
-
label="
|
328 |
show_copy_button=True,
|
329 |
height=600,
|
330 |
-
type="messages"
|
331 |
-
avatar_images=(
|
332 |
-
None,
|
333 |
-
"https://i.imgur.com/6wX7Zb4.png"
|
334 |
-
)
|
335 |
)
|
336 |
with gr.Column(scale=1):
|
337 |
-
|
338 |
label="Upload Excel File",
|
339 |
file_types=[".xlsx"],
|
340 |
height=100
|
341 |
)
|
342 |
analyze_btn = gr.Button(
|
343 |
-
"π§ Analyze
|
344 |
variant="primary"
|
345 |
)
|
346 |
report_output = gr.File(
|
347 |
label="Download Report",
|
348 |
-
visible=False
|
349 |
-
interactive=False
|
350 |
)
|
351 |
-
|
352 |
-
# State to maintain chatbot messages
|
353 |
-
chatbot_state = gr.State(value=[])
|
354 |
-
|
355 |
-
async def update_ui(file, current_state):
|
356 |
-
messages = current_state if current_state else []
|
357 |
-
messages, report_path = await process_final_report(agent, file, messages)
|
358 |
-
report_update = gr.update(visible=report_path is not None, value=report_path)
|
359 |
-
return messages, report_update, messages
|
360 |
-
|
361 |
analyze_btn.click(
|
362 |
-
fn=
|
363 |
-
inputs=[
|
364 |
-
outputs=[chatbot, report_output
|
365 |
-
api_name="analyze"
|
366 |
)
|
367 |
-
|
368 |
return demo
|
369 |
|
370 |
if __name__ == "__main__":
|
371 |
try:
|
372 |
agent = init_agent()
|
373 |
-
demo =
|
374 |
demo.launch(
|
375 |
server_name="0.0.0.0",
|
376 |
server_port=7860,
|
377 |
show_error=True,
|
378 |
-
allowed_paths=[
|
379 |
-
share=False
|
380 |
-
inline=False,
|
381 |
-
max_threads=40
|
382 |
)
|
383 |
except Exception as e:
|
384 |
-
|
385 |
sys.exit(1)
|
|
|
2 |
import os
|
3 |
import pandas as pd
|
4 |
import gradio as gr
|
5 |
+
from typing import List, Tuple, Dict, Any, Union, Generator
|
6 |
import shutil
|
7 |
import re
|
8 |
from datetime import datetime
|
9 |
import time
|
|
|
10 |
import asyncio
|
11 |
import logging
|
12 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
|
|
32 |
|
33 |
from txagent.txagent import TxAgent
|
34 |
|
35 |
+
# Updated token limits as specified
|
36 |
MAX_MODEL_TOKENS = 131072 # TxAgent's max token limit
|
37 |
MAX_CHUNK_TOKENS = 32768 # Larger chunks to reduce number of chunks
|
38 |
MAX_NEW_TOKENS = 512 # Optimized for fast generation
|
39 |
PROMPT_OVERHEAD = 500 # Estimated tokens for prompt template
|
40 |
MAX_CONCURRENT = 8 # High concurrency for A100 80GB
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
# Setup logging
|
43 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
44 |
logger = logging.getLogger(__name__)
|
45 |
|
46 |
def clean_response(text: str) -> str:
|
|
|
54 |
return text.strip()
|
55 |
|
56 |
def estimate_tokens(text: str) -> int:
|
57 |
+
return len(text) // 3.5 + 1 # More conservative estimate
|
|
|
|
|
|
|
58 |
|
59 |
def extract_text_from_excel(file_path: str) -> str:
|
|
|
60 |
all_text = []
|
61 |
try:
|
62 |
xls = pd.ExcelFile(file_path)
|
|
|
67 |
sheet_text = [f"[{sheet_name}] {line}" for line in rows]
|
68 |
all_text.extend(sheet_text)
|
69 |
except Exception as e:
|
70 |
+
logger.error(f"Error extracting Excel: {str(e)}")
|
71 |
+
raise ValueError(f"Failed to process Excel file: {str(e)}")
|
72 |
return "\n".join(all_text)
|
73 |
|
74 |
+
def split_text_into_chunks(text: str) -> List[str]:
|
75 |
+
"""Split text into chunks respecting MAX_CHUNK_TOKENS and PROMPT_OVERHEAD"""
|
76 |
+
effective_max = MAX_CHUNK_TOKENS - PROMPT_OVERHEAD
|
77 |
+
if effective_max <= 0:
|
78 |
+
raise ValueError("Effective max tokens must be positive")
|
79 |
+
|
80 |
lines = text.split("\n")
|
81 |
chunks = []
|
82 |
current_chunk = []
|
|
|
84 |
|
85 |
for line in lines:
|
86 |
line_tokens = estimate_tokens(line)
|
87 |
+
if current_tokens + line_tokens > effective_max:
|
88 |
if current_chunk:
|
89 |
chunks.append("\n".join(current_chunk))
|
90 |
current_chunk = [line]
|
|
|
95 |
|
96 |
if current_chunk:
|
97 |
chunks.append("\n".join(current_chunk))
|
98 |
+
|
99 |
+
logger.info(f"Split text into {len(chunks)} chunks")
|
100 |
return chunks
|
101 |
|
102 |
def build_prompt_from_text(chunk: str) -> str:
|
|
|
103 |
return f"""
|
104 |
### Unstructured Clinical Records
|
105 |
|
|
|
111 |
|
112 |
{chunk}
|
113 |
|
114 |
+
Please analyze the above and provide concise responses (max {MAX_NEW_TOKENS} tokens):
|
115 |
- Diagnostic Patterns
|
116 |
- Medication Issues
|
117 |
- Missed Opportunities
|
|
|
120 |
"""
|
121 |
|
122 |
def init_agent():
|
|
|
123 |
default_tool_path = os.path.abspath("data/new_tool.json")
|
124 |
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
|
125 |
|
|
|
134 |
enable_checker=True,
|
135 |
step_rag_num=4,
|
136 |
seed=100,
|
137 |
+
additional_default_tools=[],
|
138 |
+
max_model_tokens=MAX_MODEL_TOKENS # Pass the updated token limit
|
139 |
)
|
140 |
agent.init_model()
|
141 |
return agent
|
142 |
|
143 |
+
async def process_chunk(agent: TxAgent, chunk: str, chunk_idx: int) -> Tuple[int, str]:
|
144 |
+
"""Process a single chunk with error handling"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
try:
|
146 |
+
prompt = build_prompt_from_text(chunk)
|
147 |
+
prompt_tokens = estimate_tokens(prompt)
|
148 |
+
|
149 |
+
if prompt_tokens > MAX_MODEL_TOKENS:
|
150 |
+
logger.warning(f"Chunk {chunk_idx} prompt too long ({prompt_tokens} tokens)")
|
151 |
+
return chunk_idx, ""
|
152 |
+
|
153 |
+
response = ""
|
154 |
for result in agent.run_gradio_chat(
|
155 |
message=prompt,
|
156 |
history=[],
|
|
|
168 |
for r in result:
|
169 |
if hasattr(r, "content"):
|
170 |
response += r.content
|
171 |
+
|
172 |
+
return chunk_idx, clean_response(response)
|
|
|
|
|
|
|
|
|
173 |
|
174 |
+
except Exception as e:
|
175 |
+
logger.error(f"Error processing chunk {chunk_idx}: {str(e)}")
|
176 |
+
return chunk_idx, ""
|
177 |
|
178 |
+
async def process_file(agent: TxAgent, file_path: str) -> Generator[Tuple[List[Dict[str, str]], Union[str, None]], None, None]:
|
179 |
+
"""Process the entire file and yield progress updates"""
|
180 |
+
messages = []
|
181 |
report_path = None
|
182 |
+
|
|
|
|
|
|
|
|
|
183 |
try:
|
184 |
+
# Initial messages
|
185 |
+
messages.append({"role": "user", "content": f"Processing file: {os.path.basename(file_path)}"})
|
186 |
+
messages.append({"role": "assistant", "content": "β³ Extracting data from Excel..."})
|
187 |
+
yield messages, None
|
188 |
+
|
189 |
+
# Extract and chunk text
|
190 |
start_time = time.time()
|
191 |
+
text = extract_text_from_excel(file_path)
|
192 |
+
chunks = split_text_into_chunks(text)
|
193 |
+
messages.append({"role": "assistant", "content": f"β
Extracted {len(chunks)} chunks in {time.time()-start_time:.1f}s"})
|
194 |
+
yield messages, None
|
195 |
+
|
196 |
+
# Process chunks in parallel
|
197 |
chunk_responses = [None] * len(chunks)
|
198 |
+
with ThreadPoolExecutor(max_workers=MAX_CONCURRENT) as executor:
|
199 |
+
futures = []
|
200 |
+
for idx, chunk in enumerate(chunks):
|
201 |
+
futures.append(executor.submit(
|
202 |
+
lambda c, i: asyncio.run(process_chunk(agent, c, i)),
|
203 |
+
chunk, idx
|
204 |
+
)
|
205 |
+
messages.append({"role": "assistant", "content": f"π Processing chunk {idx+1}/{len(chunks)}..."})
|
206 |
+
yield messages, None
|
207 |
+
|
208 |
+
for future in as_completed(futures):
|
209 |
+
idx, response = future.result()
|
210 |
+
chunk_responses[idx] = response
|
211 |
+
messages.append({"role": "assistant", "content": f"β
Chunk {idx+1} processed"})
|
212 |
+
yield messages, None
|
213 |
+
|
214 |
+
# Combine and summarize
|
215 |
+
combined = "\n\n".join([r for r in chunk_responses if r])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
messages.append({"role": "assistant", "content": "π Generating final report..."})
|
217 |
+
yield messages, None
|
218 |
+
|
219 |
+
final_response = ""
|
220 |
+
for result in agent.run_gradio_chat(
|
221 |
+
message=f"Summarize these clinical findings:\n\n{combined}",
|
222 |
+
history=[],
|
223 |
+
temperature=0.2,
|
224 |
+
max_new_tokens=MAX_NEW_TOKENS*2, # Allow more tokens for summary
|
225 |
+
max_token=MAX_MODEL_TOKENS,
|
226 |
+
call_agent=False,
|
227 |
+
conversation=[],
|
228 |
+
):
|
229 |
+
if isinstance(result, str):
|
230 |
+
final_response += result
|
231 |
+
elif hasattr(result, "content"):
|
232 |
+
final_response += result.content
|
233 |
+
elif isinstance(result, list):
|
234 |
+
for r in result:
|
235 |
+
if hasattr(r, "content"):
|
236 |
+
final_response += r.content
|
237 |
+
|
238 |
+
messages[-1]["content"] = f"π Generating final report...\n\n{clean_response(final_response)}"
|
239 |
+
yield messages, None
|
240 |
+
|
241 |
+
# Save report
|
242 |
+
final_report = f"# Final Clinical Report\n\n{clean_response(final_response)}"
|
|
|
|
|
243 |
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
|
244 |
report_path = os.path.join(report_dir, f"report_{timestamp}.md")
|
245 |
|
246 |
with open(report_path, 'w') as f:
|
247 |
f.write(final_report)
|
248 |
+
|
249 |
+
messages.append({"role": "assistant", "content": f"β
Report saved: report_{timestamp}.md"})
|
250 |
+
yield messages, report_path
|
251 |
+
|
|
|
|
|
252 |
except Exception as e:
|
|
|
253 |
logger.error(f"Processing failed: {str(e)}")
|
254 |
+
messages.append({"role": "assistant", "content": f"β Error: {str(e)}"})
|
255 |
+
yield messages, None
|
256 |
|
257 |
+
def create_ui(agent: TxAgent):
|
258 |
+
"""Create the Gradio interface"""
|
259 |
+
with gr.Blocks(title="Clinical Analysis", css=".gradio-container {max-width: 900px}") as demo:
|
260 |
+
gr.Markdown("## π₯ Clinical Data Analysis (TxAgent)")
|
261 |
|
262 |
with gr.Row():
|
263 |
with gr.Column(scale=3):
|
264 |
chatbot = gr.Chatbot(
|
265 |
+
label="Analysis Progress",
|
266 |
show_copy_button=True,
|
267 |
height=600,
|
268 |
+
type="messages"
|
|
|
|
|
|
|
|
|
269 |
)
|
270 |
with gr.Column(scale=1):
|
271 |
+
file_input = gr.File(
|
272 |
label="Upload Excel File",
|
273 |
file_types=[".xlsx"],
|
274 |
height=100
|
275 |
)
|
276 |
analyze_btn = gr.Button(
|
277 |
+
"π§ Analyze Data",
|
278 |
variant="primary"
|
279 |
)
|
280 |
report_output = gr.File(
|
281 |
label="Download Report",
|
282 |
+
visible=False
|
|
|
283 |
)
|
284 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
285 |
analyze_btn.click(
|
286 |
+
fn=lambda file: process_file(agent, file.name) if file else ([{"role": "assistant", "content": "β Please upload a file"}], None),
|
287 |
+
inputs=[file_input],
|
288 |
+
outputs=[chatbot, report_output]
|
|
|
289 |
)
|
290 |
+
|
291 |
return demo
|
292 |
|
293 |
if __name__ == "__main__":
|
294 |
try:
|
295 |
agent = init_agent()
|
296 |
+
demo = create_ui(agent)
|
297 |
demo.launch(
|
298 |
server_name="0.0.0.0",
|
299 |
server_port=7860,
|
300 |
show_error=True,
|
301 |
+
allowed_paths=[report_dir],
|
302 |
+
share=False
|
|
|
|
|
303 |
)
|
304 |
except Exception as e:
|
305 |
+
logger.error(f"Application failed: {str(e)}")
|
306 |
sys.exit(1)
|