File size: 7,787 Bytes
f75a23b
f394b25
d184610
a57b988
f394b25
b8ad099
a57b988
 
d16299c
1c5bd8e
d14630a
d8282f1
abd27cc
f6e551c
 
d16299c
f6e551c
 
a57b988
f6e551c
 
a57b988
abd27cc
f6e551c
4bfbcac
0fb33af
f75a23b
3795cb9
1244d40
 
7a8204e
 
 
 
f6e551c
d16299c
 
 
f6e551c
d16299c
 
a57b988
 
 
ad85a12
 
e99ba15
 
 
a42578c
 
e99ba15
ad85a12
 
a57b988
 
 
ad85a12
a57b988
 
e99ba15
 
a57b988
 
 
ad85a12
e99ba15
a57b988
 
e99ba15
ad85a12
 
 
a57b988
 
0e6914c
a57b988
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8ad099
 
a57b988
b8ad099
 
a57b988
 
b8ad099
 
a57b988
 
b8ad099
a57b988
b8ad099
a57b988
b8ad099
a57b988
 
 
 
 
 
b8ad099
a57b988
b8ad099
 
 
 
 
a57b988
 
 
b8ad099
 
 
a57b988
 
b8ad099
 
a57b988
 
 
 
 
 
 
 
 
 
 
 
 
b8ad099
a57b988
 
 
 
b8ad099
a57b988
 
abd27cc
ef6f12c
83aa052
 
e99ba15
a42578c
 
7a8204e
ef6f12c
83aa052
a42578c
 
 
83aa052
 
 
 
ef6f12c
83aa052
 
ef6f12c
83aa052
ef6f12c
83aa052
 
6e4e750
83aa052
ef6f12c
83aa052
6e4e750
83aa052
ef6f12c
83aa052
 
6032958
abd27cc
a57b988
83aa052
 
a57b988
 
 
 
83aa052
a57b988
0e6914c
ef6f12c
b8ad099
0e6914c
b8ad099
ef6f12c
0fb33af
a71a831
55e3db0
abd27cc
d8282f1
a57b988
 
 
d8282f1
abd27cc
a57b988
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import sys
import os
import pandas as pd
import json
import gradio as gr
from typing import List, Tuple, Union, Generator
import hashlib
import shutil
import re
from datetime import datetime
from concurrent.futures import ThreadPoolExecutor, as_completed

# Setup directories
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)

model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")

for d in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
    os.makedirs(d, exist_ok=True)

os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir

sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "src")))
from txagent.txagent import TxAgent

MAX_MODEL_TOKENS = 32768
MAX_CHUNK_TOKENS = 8192
MAX_NEW_TOKENS = 2048
PROMPT_OVERHEAD = 500

def clean_response(text: str) -> str:
    text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
    text = re.sub(r"\n{3,}", "\n\n", text)
    text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
    return text.strip()

def estimate_tokens(text: str) -> int:
    return len(text) // 3.5 + 1

def extract_text_from_excel(file_path: str) -> str:
    all_text = []
    xls = pd.ExcelFile(file_path)
    for sheet_name in xls.sheet_names:
        df = xls.parse(sheet_name).astype(str).fillna("")
        rows = df.apply(lambda row: " | ".join([cell for cell in row if cell.strip()]), axis=1)
        sheet_text = [f"[{sheet_name}] {line}" for line in rows if line.strip()]
        all_text.extend(sheet_text)
    return "\n".join(all_text)

def split_text_into_chunks(text: str, max_tokens: int = MAX_CHUNK_TOKENS, max_chunks: int = 30) -> List[str]:
    effective_max = max_tokens - PROMPT_OVERHEAD
    lines, chunks, curr_chunk, curr_tokens = text.split("\n"), [], [], 0
    for line in lines:
        t = estimate_tokens(line)
        if curr_tokens + t > effective_max:
            if curr_chunk:
                chunks.append("\n".join(curr_chunk))
            if len(chunks) >= max_chunks:
                break
            curr_chunk, curr_tokens = [line], t
        else:
            curr_chunk.append(line)
            curr_tokens += t
    if curr_chunk and len(chunks) < max_chunks:
        chunks.append("\n".join(curr_chunk))
    return chunks

def build_prompt_from_text(chunk: str) -> str:
    return f"""
### Unstructured Clinical Records

Analyze the following clinical notes and provide a detailed, concise summary focusing on:
- Diagnostic Patterns
- Medication Issues
- Missed Opportunities
- Inconsistencies
- Follow-up Recommendations

---

{chunk}

---
Respond in well-structured bullet points with medical reasoning.
"""

def init_agent():
    tool_path = os.path.join(tool_cache_dir, "new_tool.json")
    if not os.path.exists(tool_path):
        shutil.copy(os.path.abspath("data/new_tool.json"), tool_path)
    agent = TxAgent(
        model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
        rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
        tool_files_dict={"new_tool": tool_path},
        force_finish=True,
        enable_checker=True,
        step_rag_num=4,
        seed=100
    )
    agent.init_model()
    return agent

def stream_report(agent, file: gr.File, chatbot_state: List[Tuple[str, str]]) -> Generator:
    messages = chatbot_state or []
    if file is None or not hasattr(file, "name"):
        yield messages + [("assistant", "❌ Please upload a valid Excel file.")], None, ""
        return

    messages.append(("user", f"πŸ“Ž Uploaded file: {os.path.basename(file.name)}"))
    yield messages, None, ""

    text = extract_text_from_excel(file.name)
    chunks = split_text_into_chunks(text)
    chunk_responses = []

    for i, chunk in enumerate(chunks):
        prompt = build_prompt_from_text(chunk)
        partial = ""
        for res in agent.run_gradio_chat(
            message=prompt, history=[], temperature=0.2,
            max_new_tokens=MAX_NEW_TOKENS, max_token=MAX_MODEL_TOKENS,
            call_agent=False, conversation=[]
        ):
            if isinstance(res, str):
                partial += res
            elif hasattr(res, "content"):
                partial += res.content
        cleaned = clean_response(partial)
        messages.append(("assistant", f"πŸ“„ Chunk {i+1}:\n\n{cleaned}"))
        chunk_responses.append(cleaned)
        yield messages, None, ""

    valid = [r for r in chunk_responses if r and not r.startswith("❌")]
    if not valid:
        messages.append(("assistant", "❌ No valid results found in the file."))
        yield messages, None, ""
        return

    summary_prompt = f"Summarize this analysis in a final structured report:\n\n" + "\n\n".join(valid)
    messages.append(("assistant", "πŸ“Š Generating final summary..."))
    yield messages, None, ""

    final_report = ""
    for res in agent.run_gradio_chat(
        message=summary_prompt, history=[], temperature=0.2,
        max_new_tokens=MAX_NEW_TOKENS, max_token=MAX_MODEL_TOKENS,
        call_agent=False, conversation=[]
    ):
        if isinstance(res, str):
            final_report += res
        elif hasattr(res, "content"):
            final_report += res.content

    cleaned = clean_response(final_report)
    messages.append(("assistant", cleaned))
    report_path = os.path.join(report_dir, f"report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md")
    with open(report_path, 'w') as f:
        f.write(f"# 🧠 Final Patient Report\n\n{cleaned}")

    yield messages, report_path, cleaned

def create_ui(agent):
    with gr.Blocks(css="""
        body {
            background: #10141f;
            color: #ffffff;
            font-family: 'Inter', sans-serif;
            margin: 0;
            padding: 0;
        }
        .gradio-container {
            padding: 30px;
            width: 100vw;
            max-width: 100%;
            border-radius: 0;
            background-color: #1a1f2e;
        }
        .chatbot {
            background-color: #131720;
            border-radius: 12px;
            padding: 20px;
            height: 600px;
            overflow-y: auto;
            border: 1px solid #2c3344;
        }
        .gr-button {
            background: linear-gradient(135deg, #4b4ced, #37b6e9);
            color: white;
            font-weight: 500;
            border: none;
            padding: 10px 20px;
            border-radius: 8px;
            transition: background 0.3s ease;
        }
        .gr-button:hover {
            background: linear-gradient(135deg, #37b6e9, #4b4ced);
        }
    """) as demo:
        gr.Markdown("""# 🧠 Clinical Reasoning Assistant
Upload clinical Excel records below and click **Analyze** to generate a medical summary.
""")
        chatbot = gr.Chatbot(label="Chatbot", elem_classes="chatbot", type="tuples")
        report_output_markdown = gr.Markdown(visible=False)
        file_upload = gr.File(label="Upload Excel File", file_types=[".xlsx"])
        analyze_btn = gr.Button("Analyze")
        report_output = gr.File(label="Download Report", visible=False)
        chatbot_state = gr.State(value=[])

        analyze_btn.click(
            fn=stream_report,
            inputs=[file_upload, chatbot_state],
            outputs=[chatbot, report_output, report_output_markdown]
        )

    return demo

if __name__ == "__main__":
    try:
        agent = init_agent()
        demo = create_ui(agent)
        demo.launch(server_name="0.0.0.0", server_port=7860, allowed_paths=["/data/hf_cache/reports"], share=False)
    except Exception as e:
        print(f"Error: {str(e)}")
        sys.exit(1)