File size: 10,429 Bytes
f75a23b f394b25 d184610 0fb33af f394b25 0fb33af 1244d40 d16299c 1c5bd8e d16299c d14630a d8282f1 f6e551c d16299c f6e551c 4bfbcac 0fb33af f75a23b d16299c 1244d40 7a8204e f6e551c d16299c f6e551c d16299c f6e551c d16299c f6e551c 7a8204e f6e551c ad85a12 f260d4a 0fb33af ad85a12 0fb33af 8246b02 ad85a12 b321961 ad85a12 f260d4a 0fb33af 7a8204e f260d4a b321961 ad85a12 f260d4a ad85a12 28e1ce8 b929a03 ad85a12 b929a03 ad85a12 f6e551c d16299c f6e551c d16299c f6e551c d16299c 34915cc d16299c f6e551c d16299c 0fb33af 548e7fb 8246b02 548e7fb d14630a faaf806 548e7fb faaf806 548e7fb 8246b02 548e7fb 3e386fc 548e7fb faaf806 d14630a faaf806 8246b02 faaf806 8246b02 548e7fb 6032958 b929a03 8246b02 548e7fb 8246b02 3e386fc 8246b02 548e7fb 8246b02 548e7fb 8246b02 548e7fb d14630a 0fb33af 8246b02 3e386fc b929a03 3e386fc b929a03 7a8204e b929a03 3e386fc b929a03 7a8204e b929a03 3e386fc b929a03 6032958 8246b02 b321961 b929a03 b321961 7a8204e 585f453 b929a03 585f453 8246b02 0fb33af 8246b02 0fb33af a71a831 55e3db0 b321961 d8282f1 d16299c e41225f 8246b02 d8282f1 b321961 8246b02 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
import sys
import os
import pandas as pd
import json
import gradio as gr
from typing import List, Tuple, Dict, Any, Union
import hashlib
import shutil
import re
from datetime import datetime
import time
from concurrent.futures import ThreadPoolExecutor, as_completed
# Configuration and setup
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
os.makedirs(directory, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
MAX_MODEL_TOKENS = 32768
MAX_CHUNK_TOKENS = 8192
MAX_NEW_TOKENS = 2048
PROMPT_OVERHEAD = 500
def clean_response(text: str) -> str:
try:
text = text.encode('utf-8', 'surrogatepass').decode('utf-8')
except UnicodeError:
text = text.encode('utf-8', 'replace').decode('utf-8')
text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
text = re.sub(r"\n{3,}", "\n\n", text)
text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
return text.strip()
def estimate_tokens(text: str) -> int:
return len(text) // 3.5 + 1
def extract_text_from_excel(file_path: str) -> str:
all_text = []
try:
xls = pd.ExcelFile(file_path)
for sheet_name in xls.sheet_names:
df = xls.parse(sheet_name)
df = df.astype(str).fillna("")
rows = df.apply(lambda row: " | ".join(row), axis=1)
sheet_text = [f"[{sheet_name}] {line}" for line in rows]
all_text.extend(sheet_text)
except Exception as e:
raise ValueError(f"Failed to extract text from Excel file: {str(e)}")
return "\n".join(all_text)
def split_text_into_chunks(text: str, max_tokens: int = MAX_CHUNK_TOKENS) -> List[str]:
effective_max_tokens = max_tokens - PROMPT_OVERHEAD
if effective_max_tokens <= 0:
raise ValueError("Effective max tokens must be positive.")
lines = text.split("\n")
chunks, current_chunk, current_tokens = [], [], 0
for line in lines:
line_tokens = estimate_tokens(line)
if current_tokens + line_tokens > effective_max_tokens:
if current_chunk:
chunks.append("\n".join(current_chunk))
current_chunk, current_tokens = [line], line_tokens
else:
current_chunk.append(line)
current_tokens += line_tokens
if current_chunk:
chunks.append("\n".join(current_chunk))
return chunks
def build_prompt_from_text(chunk: str) -> str:
return f"""
### Unstructured Clinical Records
Analyze the following clinical notes and provide a detailed, concise summary focusing on:
- Diagnostic Patterns
- Medication Issues
- Missed Opportunities
- Inconsistencies
- Follow-up Recommendations
---
{chunk}
---
Respond in well-structured bullet points with medical reasoning.
"""
def init_agent():
default_tool_path = os.path.abspath("data/new_tool.json")
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(target_tool_path):
shutil.copy(default_tool_path, target_tool_path)
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": target_tool_path},
force_finish=True,
enable_checker=True,
step_rag_num=4,
seed=100,
additional_default_tools=[]
)
agent.init_model()
return agent
def process_final_report(agent, file, chatbot_state: List[Dict[str, str]]) -> Tuple[List[Dict[str, str]], Union[str, None]]:
messages = chatbot_state if chatbot_state else []
report_path = None
if file is None or not hasattr(file, "name"):
messages.append({"role": "assistant", "content": "β Please upload a valid Excel file before analyzing."})
return messages, report_path
try:
messages.append({"role": "user", "content": f"Processing Excel file: {os.path.basename(file.name)}"})
extracted_text = extract_text_from_excel(file.name)
chunks = split_text_into_chunks(extracted_text)
chunk_responses = [None] * len(chunks)
def analyze_chunk(index: int, chunk: str) -> Tuple[int, str]:
prompt = build_prompt_from_text(chunk)
prompt_tokens = estimate_tokens(prompt)
if prompt_tokens > MAX_MODEL_TOKENS:
return index, f"β Chunk {index+1} prompt too long. Skipping..."
response = ""
try:
for result in agent.run_gradio_chat(
message=prompt,
history=[],
temperature=0.2,
max_new_tokens=MAX_NEW_TOKENS,
max_token=MAX_MODEL_TOKENS,
call_agent=False,
conversation=[],
):
if isinstance(result, str):
response += result
elif isinstance(result, list):
for r in result:
if hasattr(r, "content"):
response += r.content
elif hasattr(result, "content"):
response += result.content
except Exception as e:
return index, f"β Error analyzing chunk {index+1}: {str(e)}"
return index, clean_response(response)
with ThreadPoolExecutor(max_workers=1) as executor:
futures = [executor.submit(analyze_chunk, i, chunk) for i, chunk in enumerate(chunks)]
for future in as_completed(futures):
i, result = future.result()
chunk_responses[i] = result
if result.startswith("β"):
messages.append({"role": "assistant", "content": result})
valid_responses = [res for res in chunk_responses if not res.startswith("β")]
if not valid_responses:
messages.append({"role": "assistant", "content": "β No valid chunk responses to summarize."})
return messages, report_path
summary = "\n\n".join(valid_responses)
final_prompt = f"Provide a structured, consolidated clinical analysis from these results:\n\n{summary}"
messages.append({"role": "assistant", "content": "π Generating final report..."})
final_report_text = ""
for result in agent.run_gradio_chat(
message=final_prompt,
history=[],
temperature=0.2,
max_new_tokens=MAX_NEW_TOKENS,
max_token=MAX_MODEL_TOKENS,
call_agent=False,
conversation=[],
):
if isinstance(result, str):
final_report_text += result
elif isinstance(result, list):
for r in result:
if hasattr(r, "content"):
final_report_text += r.content
elif hasattr(result, "content"):
final_report_text += result.content
cleaned = clean_response(final_report_text)
report_path = os.path.join(report_dir, f"report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md")
with open(report_path, 'w') as f:
f.write(f"# π§ Final Patient Report\n\n{cleaned}")
messages.append({"role": "assistant", "content": f"π Final Report:\n\n{cleaned}"})
messages.append({"role": "assistant", "content": f"β
Report generated and saved: {os.path.basename(report_path)}"})
except Exception as e:
messages.append({"role": "assistant", "content": f"β Error processing file: {str(e)}"})
return messages, report_path
def create_ui(agent):
with gr.Blocks(css="""
html, body, .gradio-container {
height: 100vh;
width: 100vw;
padding: 0;
margin: 0;
font-family: 'Inter', sans-serif;
background: #ffffff;
}
.gr-button.primary {
background: #1e88e5;
color: #fff;
border: none;
border-radius: 6px;
font-weight: 600;
}
.gr-button.primary:hover {
background: #1565c0;
}
.gr-chatbot {
border: 1px solid #e0e0e0;
background: #f9f9f9;
border-radius: 10px;
padding: 1rem;
font-size: 15px;
}
.gr-markdown, .gr-file-upload {
background: #ffffff;
border-radius: 8px;
box-shadow: 0 1px 3px rgba(0,0,0,0.08);
}
""") as demo:
gr.Markdown("""
<h2 style='color:#1e88e5'>π©Ί Patient History AI Assistant</h2>
<p>Upload a clinical Excel file and receive an advanced diagnostic summary.</p>
""")
with gr.Row():
with gr.Column(scale=3):
chatbot = gr.Chatbot(label="Clinical Assistant", height=700, type="messages")
with gr.Column(scale=1):
file_upload = gr.File(label="Upload Excel File", file_types=[".xlsx"])
analyze_btn = gr.Button("π§ Analyze", variant="primary")
report_output = gr.File(label="Download Report", visible=False, interactive=False)
chatbot_state = gr.State(value=[])
def update_ui(file, current_state):
messages, report_path = process_final_report(agent, file, current_state)
return messages, gr.update(visible=report_path is not None, value=report_path), messages
analyze_btn.click(fn=update_ui, inputs=[file_upload, chatbot_state], outputs=[chatbot, report_output, chatbot_state])
return demo
if __name__ == "__main__":
try:
agent = init_agent()
demo = create_ui(agent)
demo.launch(server_name="0.0.0.0", server_port=7860, allowed_paths=["/data/hf_cache/reports"], share=False)
except Exception as e:
print(f"Error: {str(e)}")
sys.exit(1)
|