File size: 10,429 Bytes
f75a23b
f394b25
d184610
0fb33af
f394b25
0fb33af
 
1244d40
d16299c
1c5bd8e
d16299c
d14630a
d8282f1
f6e551c
 
 
d16299c
f6e551c
 
 
 
 
 
 
 
4bfbcac
0fb33af
f75a23b
d16299c
 
 
1244d40
 
 
7a8204e
 
 
 
f6e551c
d16299c
f6e551c
 
 
 
d16299c
 
f6e551c
d16299c
 
f6e551c
7a8204e
f6e551c
ad85a12
 
f260d4a
 
 
 
 
 
 
 
 
0fb33af
ad85a12
 
0fb33af
 
 
8246b02
ad85a12
b321961
ad85a12
f260d4a
0fb33af
7a8204e
f260d4a
b321961
ad85a12
 
f260d4a
ad85a12
 
 
 
 
 
 
28e1ce8
b929a03
ad85a12
 
 
 
 
b929a03
 
 
 
 
 
 
ad85a12
f6e551c
d16299c
f6e551c
 
 
 
 
d16299c
 
f6e551c
d16299c
 
 
 
34915cc
d16299c
f6e551c
 
d16299c
0fb33af
548e7fb
 
 
 
 
 
 
 
8246b02
548e7fb
d14630a
faaf806
548e7fb
faaf806
548e7fb
 
 
8246b02
548e7fb
 
 
 
 
 
 
 
 
 
 
3e386fc
 
 
 
 
 
 
 
548e7fb
faaf806
 
 
d14630a
faaf806
 
 
 
8246b02
 
faaf806
 
 
8246b02
548e7fb
 
6032958
b929a03
8246b02
548e7fb
8246b02
 
 
 
 
 
 
 
 
 
3e386fc
 
 
 
 
 
 
 
8246b02
 
 
548e7fb
8246b02
548e7fb
8246b02
 
548e7fb
 
 
 
 
d14630a
0fb33af
8246b02
3e386fc
b929a03
 
3e386fc
b929a03
 
 
7a8204e
 
b929a03
 
 
3e386fc
b929a03
7a8204e
b929a03
 
3e386fc
 
b929a03
 
 
 
 
 
 
 
 
 
6032958
8246b02
b321961
b929a03
 
b321961
7a8204e
585f453
 
b929a03
585f453
8246b02
 
 
0fb33af
 
 
 
 
8246b02
 
 
0fb33af
a71a831
55e3db0
b321961
d8282f1
d16299c
e41225f
8246b02
d8282f1
b321961
8246b02
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import sys
import os
import pandas as pd
import json
import gradio as gr
from typing import List, Tuple, Dict, Any, Union
import hashlib
import shutil
import re
from datetime import datetime
import time
from concurrent.futures import ThreadPoolExecutor, as_completed

# Configuration and setup
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)

model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")

for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
    os.makedirs(directory, exist_ok=True)

os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir

current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)

from txagent.txagent import TxAgent

MAX_MODEL_TOKENS = 32768
MAX_CHUNK_TOKENS = 8192
MAX_NEW_TOKENS = 2048
PROMPT_OVERHEAD = 500

def clean_response(text: str) -> str:
    try:
        text = text.encode('utf-8', 'surrogatepass').decode('utf-8')
    except UnicodeError:
        text = text.encode('utf-8', 'replace').decode('utf-8')
    text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
    text = re.sub(r"\n{3,}", "\n\n", text)
    text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
    return text.strip()

def estimate_tokens(text: str) -> int:
    return len(text) // 3.5 + 1

def extract_text_from_excel(file_path: str) -> str:
    all_text = []
    try:
        xls = pd.ExcelFile(file_path)
        for sheet_name in xls.sheet_names:
            df = xls.parse(sheet_name)
            df = df.astype(str).fillna("")
            rows = df.apply(lambda row: " | ".join(row), axis=1)
            sheet_text = [f"[{sheet_name}] {line}" for line in rows]
            all_text.extend(sheet_text)
    except Exception as e:
        raise ValueError(f"Failed to extract text from Excel file: {str(e)}")
    return "\n".join(all_text)

def split_text_into_chunks(text: str, max_tokens: int = MAX_CHUNK_TOKENS) -> List[str]:
    effective_max_tokens = max_tokens - PROMPT_OVERHEAD
    if effective_max_tokens <= 0:
        raise ValueError("Effective max tokens must be positive.")
    lines = text.split("\n")
    chunks, current_chunk, current_tokens = [], [], 0
    for line in lines:
        line_tokens = estimate_tokens(line)
        if current_tokens + line_tokens > effective_max_tokens:
            if current_chunk:
                chunks.append("\n".join(current_chunk))
            current_chunk, current_tokens = [line], line_tokens
        else:
            current_chunk.append(line)
            current_tokens += line_tokens
    if current_chunk:
        chunks.append("\n".join(current_chunk))
    return chunks

def build_prompt_from_text(chunk: str) -> str:
    return f"""
### Unstructured Clinical Records

Analyze the following clinical notes and provide a detailed, concise summary focusing on:
- Diagnostic Patterns
- Medication Issues
- Missed Opportunities
- Inconsistencies
- Follow-up Recommendations

---

{chunk}

---
Respond in well-structured bullet points with medical reasoning.
"""

def init_agent():
    default_tool_path = os.path.abspath("data/new_tool.json")
    target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
    if not os.path.exists(target_tool_path):
        shutil.copy(default_tool_path, target_tool_path)
    agent = TxAgent(
        model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
        rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
        tool_files_dict={"new_tool": target_tool_path},
        force_finish=True,
        enable_checker=True,
        step_rag_num=4,
        seed=100,
        additional_default_tools=[]
    )
    agent.init_model()
    return agent

def process_final_report(agent, file, chatbot_state: List[Dict[str, str]]) -> Tuple[List[Dict[str, str]], Union[str, None]]:
    messages = chatbot_state if chatbot_state else []
    report_path = None

    if file is None or not hasattr(file, "name"):
        messages.append({"role": "assistant", "content": "❌ Please upload a valid Excel file before analyzing."})
        return messages, report_path

    try:
        messages.append({"role": "user", "content": f"Processing Excel file: {os.path.basename(file.name)}"})
        extracted_text = extract_text_from_excel(file.name)
        chunks = split_text_into_chunks(extracted_text)
        chunk_responses = [None] * len(chunks)

        def analyze_chunk(index: int, chunk: str) -> Tuple[int, str]:
            prompt = build_prompt_from_text(chunk)
            prompt_tokens = estimate_tokens(prompt)
            if prompt_tokens > MAX_MODEL_TOKENS:
                return index, f"❌ Chunk {index+1} prompt too long. Skipping..."
            response = ""
            try:
                for result in agent.run_gradio_chat(
                    message=prompt,
                    history=[],
                    temperature=0.2,
                    max_new_tokens=MAX_NEW_TOKENS,
                    max_token=MAX_MODEL_TOKENS,
                    call_agent=False,
                    conversation=[],
                ):
                    if isinstance(result, str):
                        response += result
                    elif isinstance(result, list):
                        for r in result:
                            if hasattr(r, "content"):
                                response += r.content
                    elif hasattr(result, "content"):
                        response += result.content
            except Exception as e:
                return index, f"❌ Error analyzing chunk {index+1}: {str(e)}"
            return index, clean_response(response)

        with ThreadPoolExecutor(max_workers=1) as executor:
            futures = [executor.submit(analyze_chunk, i, chunk) for i, chunk in enumerate(chunks)]
            for future in as_completed(futures):
                i, result = future.result()
                chunk_responses[i] = result
                if result.startswith("❌"):
                    messages.append({"role": "assistant", "content": result})

        valid_responses = [res for res in chunk_responses if not res.startswith("❌")]
        if not valid_responses:
            messages.append({"role": "assistant", "content": "❌ No valid chunk responses to summarize."})
            return messages, report_path

        summary = "\n\n".join(valid_responses)
        final_prompt = f"Provide a structured, consolidated clinical analysis from these results:\n\n{summary}"
        messages.append({"role": "assistant", "content": "πŸ“Š Generating final report..."})

        final_report_text = ""
        for result in agent.run_gradio_chat(
            message=final_prompt,
            history=[],
            temperature=0.2,
            max_new_tokens=MAX_NEW_TOKENS,
            max_token=MAX_MODEL_TOKENS,
            call_agent=False,
            conversation=[],
        ):
            if isinstance(result, str):
                final_report_text += result
            elif isinstance(result, list):
                for r in result:
                    if hasattr(r, "content"):
                        final_report_text += r.content
            elif hasattr(result, "content"):
                final_report_text += result.content

        cleaned = clean_response(final_report_text)
        report_path = os.path.join(report_dir, f"report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md")
        with open(report_path, 'w') as f:
            f.write(f"# 🧠 Final Patient Report\n\n{cleaned}")

        messages.append({"role": "assistant", "content": f"πŸ“Š Final Report:\n\n{cleaned}"})
        messages.append({"role": "assistant", "content": f"βœ… Report generated and saved: {os.path.basename(report_path)}"})

    except Exception as e:
        messages.append({"role": "assistant", "content": f"❌ Error processing file: {str(e)}"})

    return messages, report_path

def create_ui(agent):
    with gr.Blocks(css="""
        html, body, .gradio-container {
            height: 100vh;
            width: 100vw;
            padding: 0;
            margin: 0;
            font-family: 'Inter', sans-serif;
            background: #ffffff;
        }
        .gr-button.primary {
            background: #1e88e5;
            color: #fff;
            border: none;
            border-radius: 6px;
            font-weight: 600;
        }
        .gr-button.primary:hover {
            background: #1565c0;
        }
        .gr-chatbot {
            border: 1px solid #e0e0e0;
            background: #f9f9f9;
            border-radius: 10px;
            padding: 1rem;
            font-size: 15px;
        }
        .gr-markdown, .gr-file-upload {
            background: #ffffff;
            border-radius: 8px;
            box-shadow: 0 1px 3px rgba(0,0,0,0.08);
        }
    """) as demo:
        gr.Markdown("""
        <h2 style='color:#1e88e5'>🩺 Patient History AI Assistant</h2>
        <p>Upload a clinical Excel file and receive an advanced diagnostic summary.</p>
        """)

        with gr.Row():
            with gr.Column(scale=3):
                chatbot = gr.Chatbot(label="Clinical Assistant", height=700, type="messages")
            with gr.Column(scale=1):
                file_upload = gr.File(label="Upload Excel File", file_types=[".xlsx"])
                analyze_btn = gr.Button("🧠 Analyze", variant="primary")
                report_output = gr.File(label="Download Report", visible=False, interactive=False)

        chatbot_state = gr.State(value=[])

        def update_ui(file, current_state):
            messages, report_path = process_final_report(agent, file, current_state)
            return messages, gr.update(visible=report_path is not None, value=report_path), messages

        analyze_btn.click(fn=update_ui, inputs=[file_upload, chatbot_state], outputs=[chatbot, report_output, chatbot_state])

    return demo

if __name__ == "__main__":
    try:
        agent = init_agent()
        demo = create_ui(agent)
        demo.launch(server_name="0.0.0.0", server_port=7860, allowed_paths=["/data/hf_cache/reports"], share=False)
    except Exception as e:
        print(f"Error: {str(e)}")
        sys.exit(1)