File size: 9,715 Bytes
a53de3c
d184610
1c5bd8e
a1a096d
 
a53de3c
59f3278
a1a096d
 
 
a53de3c
a1a096d
a53de3c
a1a096d
 
 
f6e551c
 
a57b988
f6e551c
8c16b9e
a1a096d
 
8c16b9e
4bfbcac
0fb33af
f75a23b
c5da27e
 
 
 
8b1bbeb
1244d40
a1a096d
 
f6e551c
d16299c
 
 
f6e551c
d16299c
 
a1a096d
ad85a12
59f3278
936692d
 
 
 
2639902
936692d
a53de3c
936692d
 
2639902
936692d
1a611b9
8b1bbeb
a1a096d
 
 
 
 
 
 
 
 
ad85a12
a1a096d
 
 
 
ad85a12
 
a53de3c
 
 
a1a096d
59f3278
a1a096d
 
 
 
 
1a611b9
 
 
a1a096d
1a611b9
 
 
a1a096d
1a611b9
 
 
a57b988
a53de3c
67af08d
a53de3c
 
59f3278
a1a096d
 
 
 
a53de3c
a1a096d
 
 
 
 
 
 
 
 
 
 
 
 
67af08d
a1a096d
a53de3c
 
707b929
a1a096d
 
 
59f3278
a1a096d
 
 
 
a53de3c
a1a096d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a53de3c
 
a1a096d
a53de3c
 
a1a096d
 
a53de3c
a1a096d
 
 
c5da27e
a1a096d
 
c5da27e
a1a096d
 
 
c5da27e
 
a1a096d
 
aa559b4
8c16b9e
fe5520f
 
8091c1c
50faa90
fe5520f
29db05d
67af08d
8091c1c
50faa90
8091c1c
50faa90
fe5520f
77a410a
 
 
50faa90
77a410a
 
 
 
fe5520f
77a410a
 
fe5520f
50faa90
c535770
8091c1c
50faa90
c535770
8091c1c
 
c535770
29db05d
 
c535770
29db05d
 
 
 
 
 
 
 
 
 
 
 
 
50faa90
 
 
c535770
fe5520f
 
 
8091c1c
50faa90
fe5520f
a129415
 
77a410a
 
 
26faa43
a1a096d
26faa43
a1a096d
 
 
26faa43
a1a096d
7771dd9
a71a831
55e3db0
abd27cc
d8282f1
a57b988
a1a096d
 
 
 
fe5520f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import sys, os, json, shutil, re, time, gc
import pandas as pd
from datetime import datetime
from typing import List, Tuple, Dict, Union
import gradio as gr
from concurrent.futures import ThreadPoolExecutor

# Constants
MAX_MODEL_TOKENS = 131072
MAX_NEW_TOKENS = 4096
MAX_CHUNK_TOKENS = 8192
PROMPT_OVERHEAD = 300
BATCH_SIZE = 2  # NEW: batch 2 prompts together for faster processing

# Paths
persistent_dir = "/data/hf_cache"
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")

for d in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
    os.makedirs(d, exist_ok=True)

os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir

current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)

from txagent.txagent import TxAgent

def estimate_tokens(text: str) -> int:
    return len(text) // 4 + 1

def clean_response(text: str) -> str:
    text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
    text = re.sub(r"\n{3,}", "\n\n", text)
    text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
    return text.strip()

def extract_text_from_excel(path: str) -> str:
    all_text = []
    xls = pd.ExcelFile(path)
    for sheet_name in xls.sheet_names:
        try:
            df = xls.parse(sheet_name).astype(str).fillna("")
        except Exception:
            continue
        for idx, row in df.iterrows():
            non_empty = [cell.strip() for cell in row if cell.strip()]
            if len(non_empty) >= 2:
                text_line = " | ".join(non_empty)
                if len(text_line) > 15:
                    all_text.append(f"[{sheet_name}] {text_line}")
    return "\n".join(all_text)

def split_text(text: str, max_tokens=MAX_CHUNK_TOKENS) -> List[str]:
    effective_limit = max_tokens - PROMPT_OVERHEAD
    chunks, current, current_tokens = [], [], 0
    for line in text.split("\n"):
        tokens = estimate_tokens(line)
        if current_tokens + tokens > effective_limit:
            if current:
                chunks.append("\n".join(current))
            current, current_tokens = [line], tokens
        else:
            current.append(line)
            current_tokens += tokens
    if current:
        chunks.append("\n".join(current))
    return chunks

def batch_chunks(chunks: List[str], batch_size: int = 2) -> List[List[str]]:
    return [chunks[i:i+batch_size] for i in range(0, len(chunks), batch_size)]

def build_prompt(chunk: str) -> str:
    return f"""### Unstructured Clinical Records\n\nAnalyze the clinical notes below and summarize with:\n- Diagnostic Patterns\n- Medication Issues\n- Missed Opportunities\n- Inconsistencies\n- Follow-up Recommendations\n\n---\n\n{chunk}\n\n---\nRespond concisely in bullet points with clinical reasoning."""

def init_agent() -> TxAgent:
    tool_path = os.path.join(tool_cache_dir, "new_tool.json")
    if not os.path.exists(tool_path):
        shutil.copy(os.path.abspath("data/new_tool.json"), tool_path)
    agent = TxAgent(
        model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
        rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
        tool_files_dict={"new_tool": tool_path},
        force_finish=True,
        enable_checker=True,
        step_rag_num=4,
        seed=100
    )
    agent.init_model()
    return agent

def analyze_batches(agent, batches: List[List[str]]) -> List[str]:
    results = []
    for batch in batches:
        prompt = "\n\n".join(build_prompt(chunk) for chunk in batch)
        response = ""
        try:
            for r in agent.run_gradio_chat(
                message=prompt,
                history=[],
                temperature=0.0,
                max_new_tokens=MAX_NEW_TOKENS,
                max_token=MAX_MODEL_TOKENS,
                call_agent=False,
                conversation=[]
            ):
                if isinstance(r, str):
                    response += r
                elif isinstance(r, list):
                    for m in r:
                        if hasattr(m, "content"):
                            response += m.content
                elif hasattr(r, "content"):
                    response += r.content
            results.append(clean_response(response))
        except Exception as e:
            results.append(f"❌ Error in batch: {str(e)}")
    torch.cuda.empty_cache()
    gc.collect()
    return results

def generate_final_summary(agent, combined: str) -> str:
    final_prompt = f"""Provide a structured medical report based on the following summaries:\n\n{combined}\n\nRespond in detailed medical bullet points."""
    full_report = ""
    for r in agent.run_gradio_chat(
        message=final_prompt,
        history=[],
        temperature=0.0,
        max_new_tokens=MAX_NEW_TOKENS,
        max_token=MAX_MODEL_TOKENS,
        call_agent=False,
        conversation=[]
    ):
        if isinstance(r, str):
            full_report += r
        elif isinstance(r, list):
            for m in r:
                if hasattr(m, "content"):
                    full_report += m.content
        elif hasattr(r, "content"):
            full_report += r.content
    return clean_response(full_report)

def process_report(agent, file, messages: List[Dict[str, str]]) -> Tuple[List[Dict[str, str]], Union[str, None]]:
    if not file or not hasattr(file, "name"):
        messages.append({"role": "assistant", "content": "❌ Please upload a valid Excel file."})
        return messages, None

    messages.append({"role": "user", "content": f"πŸ“‚ Processing file: {os.path.basename(file.name)}"})
    try:
        extracted = extract_text_from_excel(file.name)
        chunks = split_text(extracted)
        batches = batch_chunks(chunks, batch_size=BATCH_SIZE)
        messages.append({"role": "assistant", "content": f"πŸ” Split into {len(batches)} batches. Analyzing..."})

        batch_results = analyze_batches(agent, batches)
        valid = [res for res in batch_results if not res.startswith("❌")]

        if not valid:
            messages.append({"role": "assistant", "content": "❌ No valid batch outputs."})
            return messages, None

        summary = generate_final_summary(agent, "\n\n".join(valid))
        report_path = os.path.join(report_dir, f"report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md")
        with open(report_path, 'w', encoding='utf-8') as f:
            f.write(f"# 🧠 Final Medical Report\n\n{summary}")

        messages.append({"role": "assistant", "content": f"πŸ“Š Final Report:\n\n{summary}"})
        messages.append({"role": "assistant", "content": f"βœ… Report saved: {os.path.basename(report_path)}"})
        return messages, report_path

    except Exception as e:
        messages.append({"role": "assistant", "content": f"❌ Error: {str(e)}"})
        return messages, None

def create_ui(agent):
    with gr.Blocks(css="""
    html, body, .gradio-container {
        background-color: #0e1621;
        color: #e0e0e0;
        font-family: 'Inter', sans-serif;
        padding: 0;
        margin: 0;
    }
    h2, h3, h4 {
        color: #89b4fa;
        font-weight: 600;
    }
    button.gr-button-primary {
        background-color: #007bff !important;
        color: white !important;
        font-weight: bold;
        border-radius: 8px !important;
        padding: 0.65em 1.2em !important;
        font-size: 16px !important;
        border: none;
    }
    button.gr-button-primary:hover {
        background-color: #0056b3 !important;
    }
    .gr-chatbot, .gr-markdown, .gr-file-upload {
        border-radius: 16px;
        background-color: #1b2533;
        border: 1px solid #2a2f45;
        padding: 10px;
    }
    .gr-chatbot .message {
        font-size: 16px;
        padding: 12px 16px;
        border-radius: 18px;
        margin: 8px 0;
        max-width: 80%;
        word-break: break-word;
        white-space: pre-wrap;
    }
    .gr-chatbot .message.user {
        background-color: #334155;
        align-self: flex-end;
        margin-left: auto;
    }
    .gr-chatbot .message.assistant {
        background-color: #1e293b;
        align-self: flex-start;
        margin-right: auto;
    }
    .gr-file-upload .file-name {
        font-size: 14px;
        color: #89b4fa;
    }
    """) as demo:
        gr.Markdown("""
        <h2>πŸ“„ CPS: Clinical Patient Support System</h2>
        <p>CPS Assistant helps you analyze and summarize unstructured medical files using AI.</p>
        """)
        with gr.Column():
            chatbot = gr.Chatbot(label="CPS Assistant", height=700, type="messages")
            upload = gr.File(label="Upload Medical File", file_types=[".xlsx"])
            analyze = gr.Button("🧠 Analyze", variant="primary")
            download = gr.File(label="Download Report", visible=False, interactive=False)

        state = gr.State(value=[])

        def handle_analysis(file, chat):
            messages, report_path = process_report(agent, file, chat)
            return messages, gr.update(visible=bool(report_path), value=report_path), messages

        analyze.click(fn=handle_analysis, inputs=[upload, state], outputs=[chatbot, download, state])

    return demo

if __name__ == "__main__":
    try:
        agent = init_agent()
        ui = create_ui(agent)
        ui.launch(server_name="0.0.0.0", server_port=7860, allowed_paths=["/data/hf_cache/reports"], share=False)
    except Exception as err:
        print(f"Startup failed: {err}")
        sys.exit(1)