File size: 18,111 Bytes
c93d183
3a249bb
 
 
 
3d2120b
 
3a249bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c93d183
829d082
c93d183
 
 
 
 
 
 
 
 
 
b3dcea1
 
 
c93d183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
829d082
56b85a5
829d082
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56b85a5
5a741e8
 
 
 
56b85a5
 
 
 
 
5a741e8
 
 
 
 
 
56b85a5
 
 
 
 
 
 
 
 
5a741e8
 
 
 
 
 
56b85a5
 
 
5a741e8
56b85a5
 
 
 
 
 
 
 
 
5a741e8
 
 
 
 
 
 
 
 
56b85a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a741e8
 
 
 
 
 
56b85a5
 
 
5a741e8
4071ce6
56b85a5
 
 
 
 
 
 
 
 
 
 
 
 
 
d09d853
56b85a5
4071ce6
5a741e8
56b85a5
27e835e
3f08853
27e835e
804adf6
27e835e
 
 
5a741e8
 
 
 
bd6cebd
c48887f
804adf6
 
 
 
5a741e8
 
c48887f
5a741e8
27e835e
 
 
 
 
 
 
 
 
5a741e8
804adf6
 
 
 
5a741e8
27e835e
 
 
65d8742
27e835e
 
 
 
 
 
 
 
 
804adf6
 
 
 
 
 
 
 
bd6cebd
 
 
 
 
 
5a741e8
27e835e
 
5a741e8
 
 
bd6cebd
 
 
 
5a741e8
 
27e835e
 
 
5a741e8
27e835e
 
 
 
 
 
 
 
 
 
 
 
804adf6
27e835e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a741e8
 
 
 
27e835e
 
 
5a741e8
27e835e
 
 
3f08853
e403ca5
3f08853
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aef26d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae4aef6
 
 
 
 
 
 
 
 
 
9634b65
 
 
 
c364051
9634b65
c364051
28143df
d4c903e
28143df
6c11ebf
a656f58
1dfe639
 
 
a656f58
815e99c
804adf6
 
 
bd6cebd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
'''import gradio as gr
from transformers import TFBertForSequenceClassification, BertTokenizer
import tensorflow as tf

# Load model and tokenizer from your HF model repo
model = TFBertForSequenceClassification.from_pretrained("shrish191/sentiment-bert")
tokenizer = BertTokenizer.from_pretrained("shrish191/sentiment-bert")

def classify_sentiment(text):
    inputs = tokenizer(text, return_tensors="tf", padding=True, truncation=True)
    predictions = model(inputs).logits
    label = tf.argmax(predictions, axis=1).numpy()[0]
    labels = {0: "Negative", 1: "Neutral", 2: "Positive"}
    return labels[label]

demo = gr.Interface(fn=classify_sentiment,
                    inputs=gr.Textbox(placeholder="Enter a tweet..."),
                    outputs="text",
                    title="Tweet Sentiment Classifier",
                    description="Multilingual BERT-based Sentiment Analysis")

demo.launch()
'''
'''
import gradio as gr
from transformers import TFBertForSequenceClassification, BertTokenizer
import tensorflow as tf

# Load model and tokenizer from Hugging Face
model = TFBertForSequenceClassification.from_pretrained("shrish191/sentiment-bert")
tokenizer = BertTokenizer.from_pretrained("shrish191/sentiment-bert")

# Manually define the correct mapping
LABELS = {
    0: "Neutral",
    1: "Positive",
    2: "Negative"
}

def classify_sentiment(text):
    inputs = tokenizer(text, return_tensors="tf", truncation=True, padding=True)
    outputs = model(inputs)
    probs = tf.nn.softmax(outputs.logits, axis=1)
    pred_label = tf.argmax(probs, axis=1).numpy()[0]
    confidence = float(tf.reduce_max(probs).numpy())
    return f"Prediction: {LABELS[pred_label]} (Confidence: {confidence:.2f})"

demo = gr.Interface(
    fn=classify_sentiment,
    inputs=gr.Textbox(placeholder="Type your tweet here..."),
    outputs="text",
    title="Sentiment Analysis on Tweets",
    description="Multilingual BERT model fine-tuned for sentiment classification. Labels: Positive, Neutral, Negative."
)

demo.launch()
'''
'''
import gradio as gr
from transformers import TFBertForSequenceClassification, BertTokenizer
import tensorflow as tf
import snscrape.modules.twitter as sntwitter
import praw
import os

# Load model and tokenizer
model = TFBertForSequenceClassification.from_pretrained("shrish191/sentiment-bert")
tokenizer = BertTokenizer.from_pretrained("shrish191/sentiment-bert")

# Label Mapping
LABELS = {
    0: "Neutral",
    1: "Positive",
    2: "Negative"
}

# Reddit API setup with environment variables
reddit = praw.Reddit(
    client_id=os.getenv("REDDIT_CLIENT_ID"),
    client_secret=os.getenv("REDDIT_CLIENT_SECRET"),
    user_agent=os.getenv("REDDIT_USER_AGENT", "sentiment-classifier-script")
)

# Tweet text extractor
def fetch_tweet_text(tweet_url):
    try:
        tweet_id = tweet_url.split("/")[-1]
        for tweet in sntwitter.TwitterTweetScraper(tweet_id).get_items():
            return tweet.content
        return "Unable to extract tweet content."
    except Exception as e:
        return f"Error fetching tweet: {str(e)}"

# Reddit post extractor
def fetch_reddit_text(reddit_url):
    try:
        submission = reddit.submission(url=reddit_url)
        return f"{submission.title}\n\n{submission.selftext}"
    except Exception as e:
        return f"Error fetching Reddit post: {str(e)}"

# Sentiment classification logic
def classify_sentiment(text_input, tweet_url, reddit_url):
    if reddit_url.strip():
        text = fetch_reddit_text(reddit_url)
    elif tweet_url.strip():
        text = fetch_tweet_text(tweet_url)
    elif text_input.strip():
        text = text_input
    else:
        return "[!] Please enter text or a post URL."

    if text.lower().startswith("error") or "Unable to extract" in text:
        return f"[!] Error: {text}"

    try:
        inputs = tokenizer(text, return_tensors="tf", truncation=True, padding=True)
        outputs = model(inputs)
        probs = tf.nn.softmax(outputs.logits, axis=1)
        pred_label = tf.argmax(probs, axis=1).numpy()[0]
        confidence = float(tf.reduce_max(probs).numpy())
        return f"Prediction: {LABELS[pred_label]} (Confidence: {confidence:.2f})"
    except Exception as e:
        return f"[!] Prediction error: {str(e)}"

# Gradio Interface
demo = gr.Interface(
    fn=classify_sentiment,
    inputs=[
        gr.Textbox(label="Custom Text Input", placeholder="Type your tweet or message here..."),
        gr.Textbox(label="Tweet URL", placeholder="Paste a tweet URL here (optional)"),
        gr.Textbox(label="Reddit Post URL", placeholder="Paste a Reddit post URL here (optional)")
    ],
    outputs="text",
    title="Multilingual Sentiment Analysis",
    description="Analyze sentiment of text, tweets, or Reddit posts. Supports multiple languages using BERT!"
)

demo.launch()
'''

 
'''
import gradio as gr
from transformers import TFBertForSequenceClassification, BertTokenizer
import tensorflow as tf
import praw
import os


from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
from scipy.special import softmax


model = TFBertForSequenceClassification.from_pretrained("shrish191/sentiment-bert")
tokenizer = BertTokenizer.from_pretrained("shrish191/sentiment-bert")

LABELS = {
    0: "Neutral",
    1: "Positive",
    2: "Negative"
}


fallback_model_name = "cardiffnlp/twitter-roberta-base-sentiment"
fallback_tokenizer = AutoTokenizer.from_pretrained(fallback_model_name)
fallback_model = AutoModelForSequenceClassification.from_pretrained(fallback_model_name)

# Reddit API
reddit = praw.Reddit(
    client_id=os.getenv("REDDIT_CLIENT_ID"),
    client_secret=os.getenv("REDDIT_CLIENT_SECRET"),
    user_agent=os.getenv("REDDIT_USER_AGENT", "sentiment-classifier-ui")
)

def fetch_reddit_text(reddit_url):
    try:
        submission = reddit.submission(url=reddit_url)
        return f"{submission.title}\n\n{submission.selftext}"
    except Exception as e:
        return f"Error fetching Reddit post: {str(e)}"


def fallback_classifier(text):
    encoded_input = fallback_tokenizer(text, return_tensors='pt', truncation=True, padding=True)
    with torch.no_grad():
        output = fallback_model(**encoded_input)
    scores = softmax(output.logits.numpy()[0])
    labels = ['Negative', 'Neutral', 'Positive']
    return f"Prediction: {labels[scores.argmax()]}"

def classify_sentiment(text_input, reddit_url):
    if reddit_url.strip():
        text = fetch_reddit_text(reddit_url)
    elif text_input.strip():
        text = text_input
    else:
        return "[!] Please enter some text or a Reddit post URL."

    if text.lower().startswith("error") or "Unable to extract" in text:
        return f"[!] {text}"

    try:
        inputs = tokenizer(text, return_tensors="tf", truncation=True, padding=True)
        outputs = model(inputs)
        probs = tf.nn.softmax(outputs.logits, axis=1)
        confidence = float(tf.reduce_max(probs).numpy())
        pred_label = tf.argmax(probs, axis=1).numpy()[0]

        if confidence < 0.5:
            return fallback_classifier(text)

        return f"Prediction: {LABELS[pred_label]}"
    except Exception as e:
        return f"[!] Prediction error: {str(e)}"

# Gradio interface
demo = gr.Interface(
    fn=classify_sentiment,
    inputs=[
        gr.Textbox(
            label="Text Input (can be tweet or any content)",
            placeholder="Paste tweet or type any content here...",
            lines=4
        ),
        gr.Textbox(
            label="Reddit Post URL",
            placeholder="Paste a Reddit post URL (optional)",
            lines=1
        ),
    ],
    outputs="text",
    title="Sentiment Analyzer",
    description="πŸ” Paste any text (including tweet content) OR a Reddit post URL to analyze sentiment.\n\nπŸ’‘ Tweet URLs are not supported directly due to platform restrictions. Please paste tweet content manually."
)

demo.launch()
'''
'''
import gradio as gr
from transformers import TFBertForSequenceClassification, BertTokenizer
import tensorflow as tf
import praw
import os
import pytesseract
from PIL import Image
import cv2
import numpy as np
import re

from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
from scipy.special import softmax

# Install tesseract OCR (only runs once in Hugging Face Spaces)
os.system("apt-get update && apt-get install -y tesseract-ocr")

# Load main model
model = TFBertForSequenceClassification.from_pretrained("shrish191/sentiment-bert")
tokenizer = BertTokenizer.from_pretrained("shrish191/sentiment-bert")

LABELS = {
    0: "Neutral",
    1: "Positive",
    2: "Negative"
}

# Load fallback model
fallback_model_name = "cardiffnlp/twitter-roberta-base-sentiment"
fallback_tokenizer = AutoTokenizer.from_pretrained(fallback_model_name)
fallback_model = AutoModelForSequenceClassification.from_pretrained(fallback_model_name)

# Reddit API setup
reddit = praw.Reddit(
    client_id=os.getenv("REDDIT_CLIENT_ID"),
    client_secret=os.getenv("REDDIT_CLIENT_SECRET"),
    user_agent=os.getenv("REDDIT_USER_AGENT", "sentiment-classifier-ui")
)

def fetch_reddit_text(reddit_url):
    try:
        submission = reddit.submission(url=reddit_url)
        return f"{submission.title}\n\n{submission.selftext}"
    except Exception as e:
        return f"Error fetching Reddit post: {str(e)}"

def fallback_classifier(text):
    encoded_input = fallback_tokenizer(text, return_tensors='pt', truncation=True, padding=True)
    with torch.no_grad():
        output = fallback_model(**encoded_input)
    scores = softmax(output.logits.numpy()[0])
    labels = ['Negative', 'Neutral', 'Positive']
    return f"Prediction: {labels[scores.argmax()]}"

def clean_ocr_text(text):
    text = text.strip()
    text = re.sub(r'\s+', ' ', text)  # Replace multiple spaces and newlines
    text = re.sub(r'[^\x00-\x7F]+', '', text)  # Remove non-ASCII characters
    return text

def classify_sentiment(text_input, reddit_url, image):
    if reddit_url.strip():
        text = fetch_reddit_text(reddit_url)
    elif image is not None:
        try:
            img_array = np.array(image)
            gray = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY)
            _, thresh = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY)
            text = pytesseract.image_to_string(thresh)
            text = clean_ocr_text(text)
        except Exception as e:
            return f"[!] OCR failed: {str(e)}"
    elif text_input.strip():
        text = text_input
    else:
        return "[!] Please enter some text, upload an image, or provide a Reddit URL."

    if text.lower().startswith("error") or "Unable to extract" in text:
        return f"[!] {text}"

    try:
        inputs = tokenizer(text, return_tensors="tf", truncation=True, padding=True)
        outputs = model(inputs)
        probs = tf.nn.softmax(outputs.logits, axis=1)
        confidence = float(tf.reduce_max(probs).numpy())
        pred_label = tf.argmax(probs, axis=1).numpy()[0]

        if confidence < 0.5:
            return fallback_classifier(text)

        return f"Prediction: {LABELS[pred_label]}"
    except Exception as e:
        return f"[!] Prediction error: {str(e)}"

# Gradio interface
demo = gr.Interface(
    fn=classify_sentiment,
    inputs=[
        gr.Textbox(
            label="Text Input (can be tweet or any content)",
            placeholder="Paste tweet or type any content here...",
            lines=4
        ),
        gr.Textbox(
            label="Reddit Post URL",
            placeholder="Paste a Reddit post URL (optional)",
            lines=1
        ),
        gr.Image(
            label="Upload Image (optional)",
            type="pil"
        )
    ],
    outputs="text",
    title="Sentiment Analyzer",
    description="πŸ” Paste any text, Reddit post URL, or upload an image containing text to analyze sentiment.\n\nπŸ’‘ Tweet URLs are not supported. Please paste tweet content or screenshot instead."
)

demo.launch()
'''

import gradio as gr
from transformers import TFBertForSequenceClassification, BertTokenizer
import tensorflow as tf
import praw
import os
import pytesseract
from PIL import Image
import cv2
import numpy as np
import re

from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
from scipy.special import softmax
import matplotlib.pyplot as plt
import pandas as pd

# Install tesseract OCR (only runs once in Hugging Face Spaces)
os.system("apt-get update && apt-get install -y tesseract-ocr")

# Load main model
model = TFBertForSequenceClassification.from_pretrained("shrish191/sentiment-bert")
tokenizer = BertTokenizer.from_pretrained("shrish191/sentiment-bert")

LABELS = {0: "Neutral", 1: "Positive", 2: "Negative"}

# Load fallback model
fallback_model_name = "cardiffnlp/twitter-roberta-base-sentiment"
fallback_tokenizer = AutoTokenizer.from_pretrained(fallback_model_name)
fallback_model = AutoModelForSequenceClassification.from_pretrained(fallback_model_name)

# Reddit API setup
reddit = praw.Reddit(
    client_id=os.getenv("REDDIT_CLIENT_ID"),
    client_secret=os.getenv("REDDIT_CLIENT_SECRET"),
    user_agent=os.getenv("REDDIT_USER_AGENT", "sentiment-classifier-ui")
)

def fetch_reddit_text(reddit_url):
    try:
        submission = reddit.submission(url=reddit_url)
        return f"{submission.title}\n\n{submission.selftext}"
    except Exception as e:
        return f"Error fetching Reddit post: {str(e)}"

def fallback_classifier(text):
    encoded_input = fallback_tokenizer(text, return_tensors='pt', truncation=True, padding=True)
    with torch.no_grad():
        output = fallback_model(**encoded_input)
    scores = softmax(output.logits.numpy()[0])
    labels = ['Negative', 'Neutral', 'Positive']
    return f"Prediction: {labels[scores.argmax()]}"

def clean_ocr_text(text):
    text = text.strip()
    text = re.sub(r'\s+', ' ', text)
    text = re.sub(r'[^\x00-\x7F]+', '', text)
    return text

def classify_sentiment(text_input, reddit_url, image):
    if reddit_url.strip():
        text = fetch_reddit_text(reddit_url)
    elif image is not None:
        try:
            img_array = np.array(image)
            gray = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY)
            _, thresh = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY)
            text = pytesseract.image_to_string(thresh)
            text = clean_ocr_text(text)
        except Exception as e:
            return f"[!] OCR failed: {str(e)}"
    elif text_input.strip():
        text = text_input
    else:
        return "[!] Please enter some text, upload an image, or provide a Reddit URL."

    if text.lower().startswith("error") or "Unable to extract" in text:
        return f"[!] {text}"

    try:
        inputs = tokenizer(text, return_tensors="tf", truncation=True, padding=True)
        outputs = model(inputs)
        probs = tf.nn.softmax(outputs.logits, axis=1)
        confidence = float(tf.reduce_max(probs).numpy())
        pred_label = tf.argmax(probs, axis=1).numpy()[0]

        if confidence < 0.5:
            return fallback_classifier(text)

        return f"Prediction: {LABELS[pred_label]}"
    except Exception as e:
        return f"[!] Prediction error: {str(e)}"

# Subreddit sentiment analysis function
def analyze_subreddit(subreddit_name):
    try:
        subreddit = reddit.subreddit(subreddit_name)
        posts = list(subreddit.hot(limit=20))

        sentiments = []
        titles = []

        for post in posts:
            text = f"{post.title}\n{post.selftext}"
            try:
                inputs = tokenizer(text, return_tensors="tf", truncation=True, padding=True)
                outputs = model(inputs)
                probs = tf.nn.softmax(outputs.logits, axis=1)
                confidence = float(tf.reduce_max(probs).numpy())
                pred_label = tf.argmax(probs, axis=1).numpy()[0]

                sentiment = LABELS[pred_label] if confidence >= 0.5 else fallback_classifier(text).split(": ")[-1]
            except:
                sentiment = "Error"
            sentiments.append(sentiment)
            titles.append(post.title)

        df = pd.DataFrame({"Title": titles, "Sentiment": sentiments})
        sentiment_counts = df["Sentiment"].value_counts()

        # Plot bar chart
        fig, ax = plt.subplots()
        sentiment_counts.plot(kind="bar", color=["red", "green", "gray"], ax=ax)
        ax.set_title(f"Sentiment Distribution in r/{subreddit_name}")
        ax.set_xlabel("Sentiment")
        ax.set_ylabel("Number of Posts")

        return fig, df
    except Exception as e:
        return f"[!] Error: {str(e)}", pd.DataFrame()

# Gradio tab 1: Text/Image/Reddit Post Analysis
main_interface = gr.Interface(
    fn=classify_sentiment,
    inputs=[
        gr.Textbox(
            label="Text Input (can be tweet or any content)",
            placeholder="Paste tweet or type any content here...",
            lines=4
        ),
        gr.Textbox(
            label="Reddit Post URL",
            placeholder="Paste a Reddit post URL (optional)",
            lines=1
        ),
        gr.Image(
            label="Upload Image (optional)",
            type="pil"
        )
    ],
    outputs="text",
    title="Sentiment Analyzer",
    description="πŸ” Paste any text, Reddit post URL, or upload an image containing text to analyze sentiment.\n\nπŸ’‘ Tweet URLs are not supported. Please paste tweet content or screenshot instead."
)

# Gradio tab 2: Subreddit Analysis
subreddit_interface = gr.Interface(
    fn=analyze_subreddit,
    inputs=gr.Textbox(label="Subreddit Name", placeholder="e.g., AskReddit"),
    outputs=[
        gr.Plot(label="Sentiment Distribution"),
        gr.Dataframe(label="Post Titles and Sentiments", wrap=True)
    ],
    title="Subreddit Sentiment Analysis",
    description="πŸ“Š Enter a subreddit to analyze sentiment of its top 20 hot posts."
)

# Tabs
demo = gr.TabbedInterface(
    interface_list=[main_interface, subreddit_interface],
    tab_names=["General Sentiment Analysis", "Subreddit Analysis"]
)

demo.launch()