Update app.py
Browse files
app.py
CHANGED
@@ -51,22 +51,32 @@ import gradio as gr
|
|
51 |
from transformers import TFBertForSequenceClassification, AutoTokenizer
|
52 |
import tensorflow as tf
|
53 |
|
|
|
54 |
model = TFBertForSequenceClassification.from_pretrained("shrish191/sentiment-bert")
|
55 |
tokenizer = AutoTokenizer.from_pretrained("shrish191/sentiment-bert")
|
56 |
|
57 |
def classify_sentiment(text):
|
58 |
text = text.lower().strip()
|
59 |
inputs = tokenizer(text, return_tensors="tf", padding=True, truncation=True)
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
62 |
labels = model.config.id2label
|
63 |
-
|
64 |
-
return labels[str(label)]
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
demo.launch()
|
|
|
|
51 |
from transformers import TFBertForSequenceClassification, AutoTokenizer
|
52 |
import tensorflow as tf
|
53 |
|
54 |
+
# Load model and tokenizer
|
55 |
model = TFBertForSequenceClassification.from_pretrained("shrish191/sentiment-bert")
|
56 |
tokenizer = AutoTokenizer.from_pretrained("shrish191/sentiment-bert")
|
57 |
|
58 |
def classify_sentiment(text):
|
59 |
text = text.lower().strip()
|
60 |
inputs = tokenizer(text, return_tensors="tf", padding=True, truncation=True)
|
61 |
+
outputs = model(inputs, training=False)
|
62 |
+
logits = outputs.logits
|
63 |
+
label_id = tf.argmax(logits, axis=1).numpy()[0]
|
64 |
+
|
65 |
+
# Ensure label ID is a string before looking it up
|
66 |
labels = model.config.id2label
|
67 |
+
label_name = labels.get(str(label_id), "Unknown")
|
|
|
68 |
|
69 |
+
print(f"Text: {text} | Label ID: {label_id} | Label: {label_name} | Logits: {logits.numpy()}")
|
70 |
+
return label_name
|
71 |
+
|
72 |
+
# Gradio UI
|
73 |
+
demo = gr.Interface(
|
74 |
+
fn=classify_sentiment,
|
75 |
+
inputs=gr.Textbox(placeholder="Enter a tweet..."),
|
76 |
+
outputs="text",
|
77 |
+
title="Tweet Sentiment Classifier",
|
78 |
+
description="Multilingual BERT-based Sentiment Analysis"
|
79 |
+
)
|
80 |
|
81 |
demo.launch()
|
82 |
+
|