Update app.py
Browse files
app.py
CHANGED
@@ -138,31 +138,42 @@ demo = gr.Interface(
|
|
138 |
|
139 |
demo.launch()
|
140 |
'''
|
141 |
-
|
|
|
|
|
|
|
142 |
from transformers import TFBertForSequenceClassification, BertTokenizer
|
143 |
import tensorflow as tf
|
144 |
import praw
|
145 |
import os
|
146 |
|
147 |
-
|
|
|
|
|
|
|
|
|
|
|
148 |
model = TFBertForSequenceClassification.from_pretrained("shrish191/sentiment-bert")
|
149 |
tokenizer = BertTokenizer.from_pretrained("shrish191/sentiment-bert")
|
150 |
|
151 |
-
# Label mapping
|
152 |
LABELS = {
|
153 |
0: "Neutral",
|
154 |
1: "Positive",
|
155 |
2: "Negative"
|
156 |
}
|
157 |
|
158 |
-
|
|
|
|
|
|
|
|
|
|
|
159 |
reddit = praw.Reddit(
|
160 |
client_id=os.getenv("REDDIT_CLIENT_ID"),
|
161 |
client_secret=os.getenv("REDDIT_CLIENT_SECRET"),
|
162 |
-
user_agent=os.getenv("REDDIT_USER_AGENT", "sentiment-classifier-
|
163 |
)
|
164 |
|
165 |
-
# Reddit post fetcher
|
166 |
def fetch_reddit_text(reddit_url):
|
167 |
try:
|
168 |
submission = reddit.submission(url=reddit_url)
|
@@ -170,7 +181,15 @@ def fetch_reddit_text(reddit_url):
|
|
170 |
except Exception as e:
|
171 |
return f"Error fetching Reddit post: {str(e)}"
|
172 |
|
173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
def classify_sentiment(text_input, reddit_url):
|
175 |
if reddit_url.strip():
|
176 |
text = fetch_reddit_text(reddit_url)
|
@@ -186,13 +205,17 @@ def classify_sentiment(text_input, reddit_url):
|
|
186 |
inputs = tokenizer(text, return_tensors="tf", truncation=True, padding=True)
|
187 |
outputs = model(inputs)
|
188 |
probs = tf.nn.softmax(outputs.logits, axis=1)
|
189 |
-
pred_label = tf.argmax(probs, axis=1).numpy()[0]
|
190 |
confidence = float(tf.reduce_max(probs).numpy())
|
191 |
-
|
|
|
|
|
|
|
|
|
|
|
192 |
except Exception as e:
|
193 |
return f"[!] Prediction error: {str(e)}"
|
194 |
|
195 |
-
# Gradio
|
196 |
demo = gr.Interface(
|
197 |
fn=classify_sentiment,
|
198 |
inputs=[
|
@@ -211,7 +234,7 @@ demo = gr.Interface(
|
|
211 |
title="Sentiment Analyzer",
|
212 |
description="π Paste any text (including tweet content) OR a Reddit post URL to analyze sentiment.\n\nπ‘ Tweet URLs are not supported directly due to platform restrictions. Please paste tweet content manually."
|
213 |
)
|
214 |
-
|
215 |
demo.launch()
|
216 |
'''
|
217 |
import gradio as gr
|
@@ -219,13 +242,19 @@ from transformers import TFBertForSequenceClassification, BertTokenizer
|
|
219 |
import tensorflow as tf
|
220 |
import praw
|
221 |
import os
|
222 |
-
|
|
|
|
|
|
|
223 |
|
224 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
225 |
import torch
|
226 |
from scipy.special import softmax
|
227 |
|
|
|
|
|
228 |
|
|
|
229 |
model = TFBertForSequenceClassification.from_pretrained("shrish191/sentiment-bert")
|
230 |
tokenizer = BertTokenizer.from_pretrained("shrish191/sentiment-bert")
|
231 |
|
@@ -235,12 +264,12 @@ LABELS = {
|
|
235 |
2: "Negative"
|
236 |
}
|
237 |
|
238 |
-
|
239 |
fallback_model_name = "cardiffnlp/twitter-roberta-base-sentiment"
|
240 |
fallback_tokenizer = AutoTokenizer.from_pretrained(fallback_model_name)
|
241 |
fallback_model = AutoModelForSequenceClassification.from_pretrained(fallback_model_name)
|
242 |
|
243 |
-
# Reddit API
|
244 |
reddit = praw.Reddit(
|
245 |
client_id=os.getenv("REDDIT_CLIENT_ID"),
|
246 |
client_secret=os.getenv("REDDIT_CLIENT_SECRET"),
|
@@ -254,7 +283,6 @@ def fetch_reddit_text(reddit_url):
|
|
254 |
except Exception as e:
|
255 |
return f"Error fetching Reddit post: {str(e)}"
|
256 |
|
257 |
-
|
258 |
def fallback_classifier(text):
|
259 |
encoded_input = fallback_tokenizer(text, return_tensors='pt', truncation=True, padding=True)
|
260 |
with torch.no_grad():
|
@@ -263,13 +291,20 @@ def fallback_classifier(text):
|
|
263 |
labels = ['Negative', 'Neutral', 'Positive']
|
264 |
return f"Prediction: {labels[scores.argmax()]}"
|
265 |
|
266 |
-
def classify_sentiment(text_input, reddit_url):
|
|
|
267 |
if reddit_url.strip():
|
268 |
text = fetch_reddit_text(reddit_url)
|
|
|
|
|
|
|
|
|
|
|
|
|
269 |
elif text_input.strip():
|
270 |
text = text_input
|
271 |
else:
|
272 |
-
return "[!] Please enter some text or a Reddit
|
273 |
|
274 |
if text.lower().startswith("error") or "Unable to extract" in text:
|
275 |
return f"[!] {text}"
|
@@ -302,10 +337,14 @@ demo = gr.Interface(
|
|
302 |
placeholder="Paste a Reddit post URL (optional)",
|
303 |
lines=1
|
304 |
),
|
|
|
|
|
|
|
|
|
305 |
],
|
306 |
outputs="text",
|
307 |
title="Sentiment Analyzer",
|
308 |
-
description="π Paste any text
|
309 |
)
|
310 |
|
311 |
demo.launch()
|
|
|
138 |
|
139 |
demo.launch()
|
140 |
'''
|
141 |
+
|
142 |
+
|
143 |
+
'''
|
144 |
+
import gradio as gr
|
145 |
from transformers import TFBertForSequenceClassification, BertTokenizer
|
146 |
import tensorflow as tf
|
147 |
import praw
|
148 |
import os
|
149 |
|
150 |
+
|
151 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
152 |
+
import torch
|
153 |
+
from scipy.special import softmax
|
154 |
+
|
155 |
+
|
156 |
model = TFBertForSequenceClassification.from_pretrained("shrish191/sentiment-bert")
|
157 |
tokenizer = BertTokenizer.from_pretrained("shrish191/sentiment-bert")
|
158 |
|
|
|
159 |
LABELS = {
|
160 |
0: "Neutral",
|
161 |
1: "Positive",
|
162 |
2: "Negative"
|
163 |
}
|
164 |
|
165 |
+
|
166 |
+
fallback_model_name = "cardiffnlp/twitter-roberta-base-sentiment"
|
167 |
+
fallback_tokenizer = AutoTokenizer.from_pretrained(fallback_model_name)
|
168 |
+
fallback_model = AutoModelForSequenceClassification.from_pretrained(fallback_model_name)
|
169 |
+
|
170 |
+
# Reddit API
|
171 |
reddit = praw.Reddit(
|
172 |
client_id=os.getenv("REDDIT_CLIENT_ID"),
|
173 |
client_secret=os.getenv("REDDIT_CLIENT_SECRET"),
|
174 |
+
user_agent=os.getenv("REDDIT_USER_AGENT", "sentiment-classifier-ui")
|
175 |
)
|
176 |
|
|
|
177 |
def fetch_reddit_text(reddit_url):
|
178 |
try:
|
179 |
submission = reddit.submission(url=reddit_url)
|
|
|
181 |
except Exception as e:
|
182 |
return f"Error fetching Reddit post: {str(e)}"
|
183 |
|
184 |
+
|
185 |
+
def fallback_classifier(text):
|
186 |
+
encoded_input = fallback_tokenizer(text, return_tensors='pt', truncation=True, padding=True)
|
187 |
+
with torch.no_grad():
|
188 |
+
output = fallback_model(**encoded_input)
|
189 |
+
scores = softmax(output.logits.numpy()[0])
|
190 |
+
labels = ['Negative', 'Neutral', 'Positive']
|
191 |
+
return f"Prediction: {labels[scores.argmax()]}"
|
192 |
+
|
193 |
def classify_sentiment(text_input, reddit_url):
|
194 |
if reddit_url.strip():
|
195 |
text = fetch_reddit_text(reddit_url)
|
|
|
205 |
inputs = tokenizer(text, return_tensors="tf", truncation=True, padding=True)
|
206 |
outputs = model(inputs)
|
207 |
probs = tf.nn.softmax(outputs.logits, axis=1)
|
|
|
208 |
confidence = float(tf.reduce_max(probs).numpy())
|
209 |
+
pred_label = tf.argmax(probs, axis=1).numpy()[0]
|
210 |
+
|
211 |
+
if confidence < 0.5:
|
212 |
+
return fallback_classifier(text)
|
213 |
+
|
214 |
+
return f"Prediction: {LABELS[pred_label]}"
|
215 |
except Exception as e:
|
216 |
return f"[!] Prediction error: {str(e)}"
|
217 |
|
218 |
+
# Gradio interface
|
219 |
demo = gr.Interface(
|
220 |
fn=classify_sentiment,
|
221 |
inputs=[
|
|
|
234 |
title="Sentiment Analyzer",
|
235 |
description="π Paste any text (including tweet content) OR a Reddit post URL to analyze sentiment.\n\nπ‘ Tweet URLs are not supported directly due to platform restrictions. Please paste tweet content manually."
|
236 |
)
|
237 |
+
|
238 |
demo.launch()
|
239 |
'''
|
240 |
import gradio as gr
|
|
|
242 |
import tensorflow as tf
|
243 |
import praw
|
244 |
import os
|
245 |
+
import pytesseract
|
246 |
+
from PIL import Image
|
247 |
+
import cv2
|
248 |
+
import numpy as np
|
249 |
|
250 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
251 |
import torch
|
252 |
from scipy.special import softmax
|
253 |
|
254 |
+
# Install tesseract OCR (only runs once in Hugging Face Spaces)
|
255 |
+
os.system("apt-get update && apt-get install -y tesseract-ocr")
|
256 |
|
257 |
+
# Load main model
|
258 |
model = TFBertForSequenceClassification.from_pretrained("shrish191/sentiment-bert")
|
259 |
tokenizer = BertTokenizer.from_pretrained("shrish191/sentiment-bert")
|
260 |
|
|
|
264 |
2: "Negative"
|
265 |
}
|
266 |
|
267 |
+
# Load fallback model
|
268 |
fallback_model_name = "cardiffnlp/twitter-roberta-base-sentiment"
|
269 |
fallback_tokenizer = AutoTokenizer.from_pretrained(fallback_model_name)
|
270 |
fallback_model = AutoModelForSequenceClassification.from_pretrained(fallback_model_name)
|
271 |
|
272 |
+
# Reddit API setup
|
273 |
reddit = praw.Reddit(
|
274 |
client_id=os.getenv("REDDIT_CLIENT_ID"),
|
275 |
client_secret=os.getenv("REDDIT_CLIENT_SECRET"),
|
|
|
283 |
except Exception as e:
|
284 |
return f"Error fetching Reddit post: {str(e)}"
|
285 |
|
|
|
286 |
def fallback_classifier(text):
|
287 |
encoded_input = fallback_tokenizer(text, return_tensors='pt', truncation=True, padding=True)
|
288 |
with torch.no_grad():
|
|
|
291 |
labels = ['Negative', 'Neutral', 'Positive']
|
292 |
return f"Prediction: {labels[scores.argmax()]}"
|
293 |
|
294 |
+
def classify_sentiment(text_input, reddit_url, image):
|
295 |
+
# Priority: Reddit > Image > Textbox
|
296 |
if reddit_url.strip():
|
297 |
text = fetch_reddit_text(reddit_url)
|
298 |
+
elif image is not None:
|
299 |
+
try:
|
300 |
+
img_array = np.array(image)
|
301 |
+
text = pytesseract.image_to_string(img_array)
|
302 |
+
except Exception as e:
|
303 |
+
return f"[!] OCR failed: {str(e)}"
|
304 |
elif text_input.strip():
|
305 |
text = text_input
|
306 |
else:
|
307 |
+
return "[!] Please enter some text, upload an image, or provide a Reddit URL."
|
308 |
|
309 |
if text.lower().startswith("error") or "Unable to extract" in text:
|
310 |
return f"[!] {text}"
|
|
|
337 |
placeholder="Paste a Reddit post URL (optional)",
|
338 |
lines=1
|
339 |
),
|
340 |
+
gr.Image(
|
341 |
+
label="Upload Image (optional)",
|
342 |
+
type="pil"
|
343 |
+
)
|
344 |
],
|
345 |
outputs="text",
|
346 |
title="Sentiment Analyzer",
|
347 |
+
description="π Paste any text, Reddit post URL, or upload an image containing text to analyze sentiment.\n\nπ‘ Tweet URLs are not supported. Please paste tweet content or screenshot instead."
|
348 |
)
|
349 |
|
350 |
demo.launch()
|