Update app.py
Browse files
app.py
CHANGED
@@ -220,12 +220,12 @@ import tensorflow as tf
|
|
220 |
import praw
|
221 |
import os
|
222 |
|
223 |
-
|
224 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
225 |
import torch
|
226 |
from scipy.special import softmax
|
227 |
|
228 |
-
|
229 |
model = TFBertForSequenceClassification.from_pretrained("shrish191/sentiment-bert")
|
230 |
tokenizer = BertTokenizer.from_pretrained("shrish191/sentiment-bert")
|
231 |
|
@@ -235,7 +235,7 @@ LABELS = {
|
|
235 |
2: "Negative"
|
236 |
}
|
237 |
|
238 |
-
|
239 |
fallback_model_name = "cardiffnlp/twitter-roberta-base-sentiment"
|
240 |
fallback_tokenizer = AutoTokenizer.from_pretrained(fallback_model_name)
|
241 |
fallback_model = AutoModelForSequenceClassification.from_pretrained(fallback_model_name)
|
@@ -254,7 +254,7 @@ def fetch_reddit_text(reddit_url):
|
|
254 |
except Exception as e:
|
255 |
return f"Error fetching Reddit post: {str(e)}"
|
256 |
|
257 |
-
|
258 |
def fallback_classifier(text):
|
259 |
encoded_input = fallback_tokenizer(text, return_tensors='pt', truncation=True, padding=True)
|
260 |
with torch.no_grad():
|
|
|
220 |
import praw
|
221 |
import os
|
222 |
|
223 |
+
|
224 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
225 |
import torch
|
226 |
from scipy.special import softmax
|
227 |
|
228 |
+
|
229 |
model = TFBertForSequenceClassification.from_pretrained("shrish191/sentiment-bert")
|
230 |
tokenizer = BertTokenizer.from_pretrained("shrish191/sentiment-bert")
|
231 |
|
|
|
235 |
2: "Negative"
|
236 |
}
|
237 |
|
238 |
+
|
239 |
fallback_model_name = "cardiffnlp/twitter-roberta-base-sentiment"
|
240 |
fallback_tokenizer = AutoTokenizer.from_pretrained(fallback_model_name)
|
241 |
fallback_model = AutoModelForSequenceClassification.from_pretrained(fallback_model_name)
|
|
|
254 |
except Exception as e:
|
255 |
return f"Error fetching Reddit post: {str(e)}"
|
256 |
|
257 |
+
|
258 |
def fallback_classifier(text):
|
259 |
encoded_input = fallback_tokenizer(text, return_tensors='pt', truncation=True, padding=True)
|
260 |
with torch.no_grad():
|