Update app.py
Browse files
app.py
CHANGED
@@ -138,7 +138,7 @@ demo = gr.Interface(
|
|
138 |
|
139 |
demo.launch()
|
140 |
'''
|
141 |
-
import gradio as gr
|
142 |
from transformers import TFBertForSequenceClassification, BertTokenizer
|
143 |
import tensorflow as tf
|
144 |
import praw
|
@@ -213,5 +213,91 @@ demo = gr.Interface(
|
|
213 |
)
|
214 |
|
215 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
|
217 |
|
|
|
138 |
|
139 |
demo.launch()
|
140 |
'''
|
141 |
+
'''import gradio as gr
|
142 |
from transformers import TFBertForSequenceClassification, BertTokenizer
|
143 |
import tensorflow as tf
|
144 |
import praw
|
|
|
213 |
)
|
214 |
|
215 |
demo.launch()
|
216 |
+
'''
|
217 |
+
import gradio as gr
|
218 |
+
from transformers import TFBertForSequenceClassification, BertTokenizer, pipeline
|
219 |
+
import tensorflow as tf
|
220 |
+
import praw
|
221 |
+
import os
|
222 |
+
|
223 |
+
# Load main BERT model and tokenizer
|
224 |
+
model = TFBertForSequenceClassification.from_pretrained("shrish191/sentiment-bert")
|
225 |
+
tokenizer = BertTokenizer.from_pretrained("shrish191/sentiment-bert")
|
226 |
+
|
227 |
+
# Load fallback sentiment pipeline model
|
228 |
+
fallback_classifier = pipeline("text-classification", model="VinMir/GordonAI-sentiment_analysis")
|
229 |
+
|
230 |
+
# Label mapping for main model
|
231 |
+
LABELS = {
|
232 |
+
0: "Neutral",
|
233 |
+
1: "Positive",
|
234 |
+
2: "Negative"
|
235 |
+
}
|
236 |
+
|
237 |
+
# Reddit API setup (secure credentials from Hugging Face secrets)
|
238 |
+
reddit = praw.Reddit(
|
239 |
+
client_id=os.getenv("REDDIT_CLIENT_ID"),
|
240 |
+
client_secret=os.getenv("REDDIT_CLIENT_SECRET"),
|
241 |
+
user_agent=os.getenv("REDDIT_USER_AGENT", "sentiment-classifier-script")
|
242 |
+
)
|
243 |
+
|
244 |
+
# Fetch content from Reddit URL
|
245 |
+
def fetch_reddit_text(reddit_url):
|
246 |
+
try:
|
247 |
+
submission = reddit.submission(url=reddit_url)
|
248 |
+
return f"{submission.title}\n\n{submission.selftext}"
|
249 |
+
except Exception as e:
|
250 |
+
return f"Error fetching Reddit post: {str(e)}"
|
251 |
+
|
252 |
+
# Sentiment classification function
|
253 |
+
def classify_sentiment(text_input, reddit_url):
|
254 |
+
if reddit_url.strip():
|
255 |
+
text = fetch_reddit_text(reddit_url)
|
256 |
+
elif text_input.strip():
|
257 |
+
text = text_input
|
258 |
+
else:
|
259 |
+
return "[!] Please enter some text or a Reddit post URL."
|
260 |
+
|
261 |
+
if text.lower().startswith("error") or "Unable to extract" in text:
|
262 |
+
return f"[!] {text}"
|
263 |
+
|
264 |
+
try:
|
265 |
+
# Main BERT model prediction
|
266 |
+
inputs = tokenizer(text, return_tensors="tf", truncation=True, padding=True)
|
267 |
+
outputs = model(inputs)
|
268 |
+
probs = tf.nn.softmax(outputs.logits, axis=1)
|
269 |
+
confidence = float(tf.reduce_max(probs).numpy())
|
270 |
+
pred_label = tf.argmax(probs, axis=1).numpy()[0]
|
271 |
+
|
272 |
+
if confidence < 0.5:
|
273 |
+
# Use fallback model silently
|
274 |
+
fallback = fallback_classifier(text)[0]['label']
|
275 |
+
return f"Prediction: {fallback}"
|
276 |
+
|
277 |
+
return f"Prediction: {LABELS[pred_label]}"
|
278 |
+
except Exception as e:
|
279 |
+
return f"[!] Prediction error: {str(e)}"
|
280 |
+
|
281 |
+
# Gradio interface
|
282 |
+
demo = gr.Interface(
|
283 |
+
fn=classify_sentiment,
|
284 |
+
inputs=[
|
285 |
+
gr.Textbox(
|
286 |
+
label="Text Input (can be tweet or any content)",
|
287 |
+
placeholder="Paste tweet or type any content here...",
|
288 |
+
lines=4
|
289 |
+
),
|
290 |
+
gr.Textbox(
|
291 |
+
label="Reddit Post URL",
|
292 |
+
placeholder="Paste a Reddit post URL (optional)",
|
293 |
+
lines=1
|
294 |
+
),
|
295 |
+
],
|
296 |
+
outputs="text",
|
297 |
+
title="Sentiment Analyzer",
|
298 |
+
description="🔍 Paste any text (including tweet content) OR a Reddit post URL to analyze sentiment.\n\n💡 Tweet URLs are not supported directly due to platform restrictions. Please paste tweet content manually."
|
299 |
+
)
|
300 |
+
|
301 |
+
demo.launch()
|
302 |
|
303 |
|