Update app.py
Browse files
app.py
CHANGED
@@ -237,7 +237,7 @@ demo = gr.Interface(
|
|
237 |
|
238 |
demo.launch()
|
239 |
'''
|
240 |
-
|
241 |
import gradio as gr
|
242 |
from transformers import TFBertForSequenceClassification, BertTokenizer
|
243 |
import tensorflow as tf
|
@@ -358,136 +358,12 @@ demo = gr.Interface(
|
|
358 |
)
|
359 |
|
360 |
demo.launch()
|
361 |
-
'''
|
362 |
-
|
363 |
-
import gradio as gr
|
364 |
-
from transformers import TFAutoModelForSequenceClassification, AutoTokenizer
|
365 |
-
import tensorflow as tf
|
366 |
-
import numpy as np
|
367 |
-
import praw
|
368 |
-
import re
|
369 |
-
from wordcloud import WordCloud
|
370 |
-
import matplotlib.pyplot as plt
|
371 |
-
from collections import Counter
|
372 |
-
import plotly.graph_objects as go
|
373 |
-
import os
|
374 |
-
|
375 |
-
# Load pre-trained model and tokenizer
|
376 |
-
model = TFAutoModelForSequenceClassification.from_pretrained("shrish191/sentiment-bert")
|
377 |
-
tokenizer = AutoTokenizer.from_pretrained("shrish191/sentiment-bert")
|
378 |
-
|
379 |
-
label_map = {0: 'Negative', 1: 'Neutral', 2: 'Positive'}
|
380 |
-
|
381 |
-
# Sentiment Prediction Function
|
382 |
-
def predict_sentiment(text):
|
383 |
-
inputs = tokenizer(text, return_tensors="tf", truncation=True, padding=True)
|
384 |
-
outputs = model(inputs)[0]
|
385 |
-
probs = tf.nn.softmax(outputs, axis=1).numpy()
|
386 |
-
pred_label = np.argmax(probs, axis=1)[0]
|
387 |
-
return label_map[pred_label]
|
388 |
-
|
389 |
-
# Reddit URL Handling
|
390 |
-
def analyze_reddit_url(url):
|
391 |
-
reddit = praw.Reddit(
|
392 |
-
client_id="YOUR_CLIENT_ID",
|
393 |
-
client_secret="YOUR_CLIENT_SECRET",
|
394 |
-
user_agent="YOUR_USER_AGENT"
|
395 |
-
)
|
396 |
-
try:
|
397 |
-
submission = reddit.submission(url=url)
|
398 |
-
submission.comments.replace_more(limit=0)
|
399 |
-
comments = [comment.body for comment in submission.comments.list() if len(comment.body) > 10][:100]
|
400 |
-
sentiments = [predict_sentiment(comment) for comment in comments]
|
401 |
-
sentiment_counts = Counter(sentiments)
|
402 |
-
result_text = "\n".join([f"{s}: {c}" for s, c in sentiment_counts.items()])
|
403 |
-
|
404 |
-
# Pie chart
|
405 |
-
fig = go.Figure(data=[go.Pie(labels=list(sentiment_counts.keys()),
|
406 |
-
values=list(sentiment_counts.values()),
|
407 |
-
hole=0.3)])
|
408 |
-
fig.update_layout(title="Sentiment Distribution of Reddit Comments")
|
409 |
-
return result_text, fig
|
410 |
-
except Exception as e:
|
411 |
-
return str(e), None
|
412 |
-
|
413 |
-
# Subreddit Analysis Function
|
414 |
-
def analyze_subreddit(subreddit_name):
|
415 |
-
reddit = praw.Reddit(
|
416 |
-
client_id="YOUR_CLIENT_ID",
|
417 |
-
client_secret="YOUR_CLIENT_SECRET",
|
418 |
-
user_agent="YOUR_USER_AGENT"
|
419 |
-
)
|
420 |
-
try:
|
421 |
-
subreddit = reddit.subreddit(subreddit_name)
|
422 |
-
posts = list(subreddit.hot(limit=100))
|
423 |
-
texts = [post.title + " " + post.selftext for post in posts if post.selftext or post.title]
|
424 |
-
|
425 |
-
if not texts:
|
426 |
-
return "No valid text data found in subreddit.", None
|
427 |
-
|
428 |
-
sentiments = [predict_sentiment(text) for text in texts]
|
429 |
-
sentiment_counts = Counter(sentiments)
|
430 |
-
result_text = "\n".join([f"{s}: {c}" for s, c in sentiment_counts.items()])
|
431 |
-
|
432 |
-
# Pie chart
|
433 |
-
fig = go.Figure(data=[go.Pie(labels=list(sentiment_counts.keys()),
|
434 |
-
values=list(sentiment_counts.values()),
|
435 |
-
hole=0.3)])
|
436 |
-
fig.update_layout(title=f"Sentiment Distribution in r/{subreddit_name}")
|
437 |
-
|
438 |
-
return result_text, fig
|
439 |
-
except Exception as e:
|
440 |
-
return str(e), None
|
441 |
|
442 |
-
|
443 |
-
from PIL import Image
|
444 |
-
import pytesseract
|
445 |
|
446 |
-
def extract_text_from_image(image):
|
447 |
-
try:
|
448 |
-
img = Image.open(image)
|
449 |
-
text = pytesseract.image_to_string(img)
|
450 |
-
return text
|
451 |
-
except Exception as e:
|
452 |
-
return f"Error extracting text: {e}"
|
453 |
|
454 |
-
def analyze_image_sentiment(image):
|
455 |
-
extracted_text = extract_text_from_image(image)
|
456 |
-
if extracted_text:
|
457 |
-
sentiment = predict_sentiment(extracted_text)
|
458 |
-
return f"Extracted Text: {extracted_text}\n\nPredicted Sentiment: {sentiment}"
|
459 |
-
return "No text extracted."
|
460 |
|
461 |
-
# Gradio Interface
|
462 |
-
with gr.Blocks() as demo:
|
463 |
-
gr.Markdown("## 🧠 Sentiment Analysis App")
|
464 |
-
with gr.Tab("Analyze Text"):
|
465 |
-
input_text = gr.Textbox(label="Enter text")
|
466 |
-
output_text = gr.Textbox(label="Predicted Sentiment")
|
467 |
-
analyze_btn = gr.Button("Analyze")
|
468 |
-
analyze_btn.click(fn=predict_sentiment, inputs=input_text, outputs=output_text)
|
469 |
-
|
470 |
-
with gr.Tab("Analyze Reddit URL"):
|
471 |
-
reddit_url = gr.Textbox(label="Enter Reddit post URL")
|
472 |
-
url_result = gr.Textbox(label="Sentiment Counts")
|
473 |
-
url_plot = gr.Plot(label="Pie Chart")
|
474 |
-
analyze_url_btn = gr.Button("Analyze Reddit Comments")
|
475 |
-
analyze_url_btn.click(fn=analyze_reddit_url, inputs=reddit_url, outputs=[url_result, url_plot])
|
476 |
-
|
477 |
-
with gr.Tab("Analyze Image"):
|
478 |
-
image_input = gr.Image(label="Upload an image")
|
479 |
-
image_result = gr.Textbox(label="Sentiment from Image Text")
|
480 |
-
analyze_img_btn = gr.Button("Analyze Image")
|
481 |
-
analyze_img_btn.click(fn=analyze_image_sentiment, inputs=image_input, outputs=image_result)
|
482 |
-
|
483 |
-
with gr.Tab("Analyze Subreddit"):
|
484 |
-
subreddit_input = gr.Textbox(label="Enter subreddit name (without r/)")
|
485 |
-
subreddit_result = gr.Textbox(label="Sentiment Counts")
|
486 |
-
subreddit_plot = gr.Plot(label="Pie Chart")
|
487 |
-
analyze_subreddit_btn = gr.Button("Analyze Subreddit")
|
488 |
-
analyze_subreddit_btn.click(fn=analyze_subreddit, inputs=subreddit_input, outputs=[subreddit_result, subreddit_plot])
|
489 |
|
490 |
-
demo.launch()
|
491 |
|
492 |
|
493 |
|
|
|
237 |
|
238 |
demo.launch()
|
239 |
'''
|
240 |
+
|
241 |
import gradio as gr
|
242 |
from transformers import TFBertForSequenceClassification, BertTokenizer
|
243 |
import tensorflow as tf
|
|
|
358 |
)
|
359 |
|
360 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
361 |
|
362 |
+
|
|
|
|
|
363 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
364 |
|
|
|
|
|
|
|
|
|
|
|
|
|
365 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
366 |
|
|
|
367 |
|
368 |
|
369 |
|