Update app.py
Browse files
app.py
CHANGED
@@ -55,6 +55,7 @@ demo = gr.Interface(
|
|
55 |
|
56 |
demo.launch()
|
57 |
'''
|
|
|
58 |
import gradio as gr
|
59 |
from transformers import TFBertForSequenceClassification, BertTokenizer
|
60 |
import tensorflow as tf
|
@@ -136,5 +137,81 @@ demo = gr.Interface(
|
|
136 |
)
|
137 |
|
138 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
|
|
|
55 |
|
56 |
demo.launch()
|
57 |
'''
|
58 |
+
'''
|
59 |
import gradio as gr
|
60 |
from transformers import TFBertForSequenceClassification, BertTokenizer
|
61 |
import tensorflow as tf
|
|
|
137 |
)
|
138 |
|
139 |
demo.launch()
|
140 |
+
'''
|
141 |
+
import gradio as gr
|
142 |
+
from transformers import TFBertForSequenceClassification, BertTokenizer
|
143 |
+
import tensorflow as tf
|
144 |
+
import praw
|
145 |
+
import os
|
146 |
+
|
147 |
+
# Load model and tokenizer from Hugging Face
|
148 |
+
model = TFBertForSequenceClassification.from_pretrained("shrish191/sentiment-bert")
|
149 |
+
tokenizer = BertTokenizer.from_pretrained("shrish191/sentiment-bert")
|
150 |
+
|
151 |
+
# Label mapping
|
152 |
+
LABELS = {
|
153 |
+
0: "Neutral",
|
154 |
+
1: "Positive",
|
155 |
+
2: "Negative"
|
156 |
+
}
|
157 |
+
|
158 |
+
# Reddit API setup (credentials loaded securely from secrets)
|
159 |
+
reddit = praw.Reddit(
|
160 |
+
client_id=os.getenv("REDDIT_CLIENT_ID"),
|
161 |
+
client_secret=os.getenv("REDDIT_CLIENT_SECRET"),
|
162 |
+
user_agent=os.getenv("REDDIT_USER_AGENT", "sentiment-classifier-script")
|
163 |
+
)
|
164 |
+
|
165 |
+
# Reddit post fetcher
|
166 |
+
def fetch_reddit_text(reddit_url):
|
167 |
+
try:
|
168 |
+
submission = reddit.submission(url=reddit_url)
|
169 |
+
return f"{submission.title}\n\n{submission.selftext}"
|
170 |
+
except Exception as e:
|
171 |
+
return f"Error fetching Reddit post: {str(e)}"
|
172 |
+
|
173 |
+
# Main sentiment function
|
174 |
+
def classify_sentiment(text_input, reddit_url):
|
175 |
+
if reddit_url.strip():
|
176 |
+
text = fetch_reddit_text(reddit_url)
|
177 |
+
elif text_input.strip():
|
178 |
+
text = text_input
|
179 |
+
else:
|
180 |
+
return "[!] Please enter some text or a Reddit post URL."
|
181 |
+
|
182 |
+
if text.lower().startswith("error") or "Unable to extract" in text:
|
183 |
+
return f"[!] {text}"
|
184 |
+
|
185 |
+
try:
|
186 |
+
inputs = tokenizer(text, return_tensors="tf", truncation=True, padding=True)
|
187 |
+
outputs = model(inputs)
|
188 |
+
probs = tf.nn.softmax(outputs.logits, axis=1)
|
189 |
+
pred_label = tf.argmax(probs, axis=1).numpy()[0]
|
190 |
+
confidence = float(tf.reduce_max(probs).numpy())
|
191 |
+
return f"Prediction: {LABELS[pred_label]} (Confidence: {confidence:.2f})"
|
192 |
+
except Exception as e:
|
193 |
+
return f"[!] Prediction error: {str(e)}"
|
194 |
+
|
195 |
+
# Gradio UI
|
196 |
+
demo = gr.Interface(
|
197 |
+
fn=classify_sentiment,
|
198 |
+
inputs=[
|
199 |
+
gr.Textbox(
|
200 |
+
label="Text Input (can be tweet or any content)",
|
201 |
+
placeholder="Paste tweet or type any content here...",
|
202 |
+
lines=4
|
203 |
+
),
|
204 |
+
gr.Textbox(
|
205 |
+
label="Reddit Post URL",
|
206 |
+
placeholder="Paste a Reddit post URL (optional)",
|
207 |
+
lines=1
|
208 |
+
),
|
209 |
+
],
|
210 |
+
outputs="text",
|
211 |
+
title="Multilingual Sentiment Analysis",
|
212 |
+
description="🔍 Paste any text (including tweet content) OR a Reddit post URL to analyze sentiment.\n\n💡 Tweet URLs are not supported directly due to platform restrictions. Please paste tweet content manually."
|
213 |
+
)
|
214 |
+
|
215 |
+
demo.launch()
|
216 |
|
217 |
|