File size: 9,202 Bytes
5526f12
6a85efc
5526f12
b204d6b
9e4badf
 
 
 
 
 
 
 
 
a735e8f
 
 
9e4badf
2bee048
fb3f6b2
6a85efc
fb3f6b2
57c2123
 
cbdb218
57c2123
 
 
 
 
45f3db1
57c2123
a735e8f
57c2123
 
 
 
 
cbdb218
57c2123
 
5526f12
6a85efc
 
 
298c5bd
6a85efc
57c2123
6a85efc
298c5bd
6a85efc
 
298c5bd
a735e8f
57c2123
 
a735e8f
b204d6b
2bee048
fb3f6b2
6a85efc
fb3f6b2
57c2123
a735e8f
298c5bd
6a85efc
b204d6b
6a85efc
b204d6b
 
6a85efc
b204d6b
02117b7
 
cbdb218
02117b7
 
 
 
 
 
 
 
cbdb218
02117b7
 
 
 
 
 
 
 
cbdb218
02117b7
 
 
 
 
 
 
 
cbdb218
02117b7
 
 
 
 
 
 
cbdb218
02117b7
 
 
 
 
 
 
 
cbdb218
02117b7
 
 
 
 
 
 
 
cbdb218
02117b7
 
 
 
 
 
 
 
 
a735e8f
b204d6b
02117b7
b204d6b
 
57c2123
 
a735e8f
57c2123
b204d6b
 
 
 
a735e8f
 
57c2123
a735e8f
b204d6b
 
a735e8f
b204d6b
a735e8f
b204d6b
5526f12
 
6a85efc
5526f12
298c5bd
6a85efc
02117b7
6a85efc
a735e8f
 
 
b204d6b
a735e8f
b204d6b
 
 
a735e8f
6a85efc
 
b204d6b
a735e8f
6a85efc
 
57c2123
a735e8f
6a85efc
57c2123
a735e8f
 
b204d6b
6a85efc
 
 
b189e5a
6a85efc
a735e8f
6a85efc
b204d6b
a735e8f
57c2123
 
 
a735e8f
 
6a85efc
a735e8f
298c5bd
02117b7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
##########################################
# Step 0: Import required libraries
##########################################
import streamlit as st  # For building the web application interface
from transformers import (
    pipeline,
    SpeechT5Processor,
    SpeechT5ForTextToSpeech,
    SpeechT5HifiGan,
    AutoModelForCausalLM,
    AutoTokenizer
)  # For sentiment analysis, text-to-speech, and text generation
from datasets import load_dataset  # For loading datasets (e.g., speaker embeddings)
import torch  # For tensor operations
import soundfile as sf  # For saving audio as .wav files
import sentencepiece  # Required by SpeechT5Processor for tokenization


##########################################
# Streamlit application title and input
##########################################
# Display a colorful, large title in a visually appealing font
st.markdown(
    "<h1 style='text-align: center; color: #FF5720; font-size: 50px;'>Just Comment</h1>",
    unsafe_allow_html=True
)  # Use HTML and CSS to set a custom title design

# Display a smaller, gentle and warm subtitle below the title
st.markdown(
    "<h3 style='text-align: center; color: #5D6D7E; font-style: italic;'>I'm listening to you, my friend~</h3>",
    unsafe_allow_html=True
)  # Use HTML for a friendly and soft-styled subtitle

# Add a well-designed text area for user input
text = st.text_area(
    "Enter your comment", 
    placeholder="Type something here...", 
    height=280, 
    help="Write a comment you would like us to analyze and respond to!"  # Provide a helpful tooltip
)

##########################################
# Step 1: Sentiment Analysis Function
##########################################
def analyze_dominant_emotion(user_review):
    """
    Analyze the dominant emotion in the user's comment using a fine-tuned text classification model.
    """
    emotion_classifier = pipeline(
        "text-classification", 
        model="Thea231/jhartmann_emotion_finetuning", 
        return_all_scores=True
    )  # Load the fine-tuned text classification model

    emotion_results = emotion_classifier(user_review)[0]  # Perform sentiment analysis on the input text
    dominant_emotion = max(emotion_results, key=lambda x: x['score'])  # Identify the emotion with the highest confidence
    return dominant_emotion  # Return the dominant emotion (label and score)

##########################################
# Step 2: Response Generation Function
##########################################


def response_gen(user_review):
    """
    Generate a concise and logical response based on the sentiment of the user's comment.
    """
    dominant_emotion = analyze_dominant_emotion(user_review)  # Get the dominant emotion of the user's comment
    emotion_label = dominant_emotion['label'].lower()  # Extract the emotion label in lowercase format
    
    # Define response templates for each emotion
    emotion_prompts = {
        "anger": (
            f"'{user_review}'\n\n"
            "As a customer service representative, craft a professional response that:\n"
            "- Begins with sincere apology and acknowledgment\n"
            "- Clearly explains solution process with concrete steps\n"
            "- Offers appropriate compensation/redemption\n"
            "- Keeps tone humble and solution-focused (3-4 sentences)\n\n"
            "Response:"
        ),
        "disgust": (
            f"'{user_review}'\n\n"
            "As a customer service representative, craft a response that:\n"
            "- Immediately acknowledges the product issue\n"
            "- Explains quality control measures being taken\n"
            "- Provides clear return/replacement instructions\n"
            "- Offers goodwill gesture (3-4 sentences)\n\n"
            "Response:"
        ),
        "fear": (
            f"'{user_review}'\n\n"
            "As a customer service representative, craft a reassuring response that:\n"
            "- Directly addresses the safety worries\n"
            "- References relevant certifications/standards\n"
            "- Offers dedicated support contact\n"
            "- Provides satisfaction guarantee (3-4 sentences)\n\n"
            "Response:"
        ),
        "joy": (
            f"'{user_review}'\n\n"
            "As a customer service representative, craft a concise and enthusiastic response that:\n"
            "- Thanks the customer for their feedback\n"
            "- Acknowledges both positive and constructive comments\n"
            "- Invites them to explore loyalty programs\n\n"
            "Response:"
        ),
        "neutral": (
            f"'{user_review}'\n\n"
            "As a customer service representative, craft a balanced response that:\n"
            "- Provides additional relevant product information\n"
            "- Highlights key service features\n"
            "- Politely requests more detailed feedback\n"
            "- Maintains professional tone (3-4 sentences)\n\n"
            "Response:"
        ),
        "sadness": (
            f"'{user_review}'\n\n"
            "As a customer service representative, craft an empathetic response that:\n"
            "- Shows genuine understanding of the issue\n"
            "- Proposes personalized recovery solution\n"
            "- Offers extended support options\n"
            "- Maintains positive outlook (3-4 sentences)\n\n"
            "Response:"
        ),
        "surprise": (
            f"'{user_review}'\n\n"
            "As a customer service representative, craft a response that:\n"
            "- Matches customer's positive energy appropriately\n"
            "- Highlights unexpected product benefits\n"
            "- Invites to user community/events\n"
            "- Maintains brand voice (3-4 sentences)\n\n"
            "Response:"
        )
    }
    
    # Select the appropriate prompt based on the user's emotion
    prompt = emotion_prompts.get(
        emotion_label, 
        f"Neutral feedback: '{user_review}'\n\nWrite a professional and concise response (50-200 words max).\n\nResponse:"
    )

    # Load the tokenizer and language model for response generation
    tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-0.5B")  # Load tokenizer for text processing
    model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen1.5-0.5B")  # Load language model for text generation

    inputs = tokenizer(prompt, return_tensors="pt")  # Tokenize the input prompt
    outputs = model.generate(
        **inputs,
        max_new_tokens=300,  # Limit generated tokens to ensure concise responses
        min_length=75,  # Ensure the generated response is logical and complete
        no_repeat_ngram_size=2,  # Avoid repetitive phrases
        temperature=0.7  # Add randomness for natural-sounding responses
    )

    # Decode the generated response back into text
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    print(f"Generated response: {response}")  # Debugging: print the response
    return response  # Return the generated response

##########################################
# Step 3: Text-to-Speech Conversion Function
##########################################
def sound_gen(response):
    """
    Convert the generated response to speech and save it as a .wav file.
    """
    processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")  # Load processor for TTS
    model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")  # Load pre-trained TTS model
    vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")  # Load vocoder for waveform generation

    # Load neutral female voice embedding from dataset
    embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")  # Load speaker embeddings
    speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)  # Use a default speaker embedding

    # Process the input text and generate a spectrogram
    inputs = processor(text=response, return_tensors="pt")
    spectrogram = model.generate_speech(inputs["input_ids"], speaker_embeddings)

    # Use vocoder to convert the spectrogram into a waveform
    with torch.no_grad():
        speech = vocoder(spectrogram)

    # Save the audio file as .wav
    sf.write("customer_service_response.wav", speech.numpy(), samplerate=16000)

    # Create an auto-playing audio player in Streamlit
    st.audio("customer_service_response.wav", start_time=0)  # Enable audio playback with autoplay

##########################################
# Main Function
##########################################
def main():
    """
    Main function to handle sentiment analysis, response generation, and text-to-speech functionalities.
    """
    if text:  # Check if the user has entered a comment
        response = response_gen(text)  # Generate a concise and logical response
        st.markdown(
            f"<p style='color:#2ECC71; font-size:20px;'>{response}</p>", 
            unsafe_allow_html=True
        )  # Display the response in a styled font
        sound_gen(response)  # Convert the response to speech and play it

# Execute the main function
if __name__ == "__main__":
    main()