Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,11 @@
|
|
1 |
!pip install huggingface_hub
|
2 |
-
!pip install
|
3 |
!pip install datasets soundfile
|
4 |
|
5 |
##########################################
|
6 |
# Step 0: 导入必需的库
|
7 |
##########################################
|
8 |
-
|
9 |
from transformers import pipeline, SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan, AutoModelForCausalLM, AutoTokenizer, pipeline
|
10 |
from datasets import load_dataset
|
11 |
from IPython.display import Audio, display
|
@@ -16,10 +16,19 @@ from google.colab import drive
|
|
16 |
|
17 |
from huggingface_hub import login
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
##########################################
|
21 |
# Step 1:情感分析 - 分析用户评论的情感倾向
|
22 |
##########################################
|
|
|
|
|
23 |
|
24 |
pipe = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base")
|
25 |
|
@@ -37,10 +46,15 @@ user_review = "I love the fast delivery, but the product quality could be better
|
|
37 |
emotion_results = emotion_classifier(user_review)[0] # 返回列表中的第一个结果(单条输入)
|
38 |
|
39 |
# 打印所有情感维度及其分数
|
|
|
40 |
print("情感分析结果(多维度):")
|
41 |
for emotion in emotion_results:
|
42 |
print(f"{emotion['label']}: {emotion['score']:.4f}")
|
43 |
-
|
|
|
|
|
|
|
|
|
44 |
# 提取置信度最高的情感标签(可选)
|
45 |
dominant_emotion = max(emotion_results, key=lambda x: x['score'])
|
46 |
print("\n主导情感:", dominant_emotion['label'], f"(置信度: {dominant_emotion['score']:.2f})")
|
|
|
1 |
!pip install huggingface_hub
|
2 |
+
!pip install transformers
|
3 |
!pip install datasets soundfile
|
4 |
|
5 |
##########################################
|
6 |
# Step 0: 导入必需的库
|
7 |
##########################################
|
8 |
+
import streamlit as st
|
9 |
from transformers import pipeline, SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan, AutoModelForCausalLM, AutoTokenizer, pipeline
|
10 |
from datasets import load_dataset
|
11 |
from IPython.display import Audio, display
|
|
|
16 |
|
17 |
from huggingface_hub import login
|
18 |
|
19 |
+
# Streamlit application title
|
20 |
+
st.title("Comment reply for you")
|
21 |
+
st.write("automative reply")
|
22 |
+
|
23 |
+
# Text input for user to enter the comment
|
24 |
+
text = st.text_area("Enter your comment", "")
|
25 |
+
|
26 |
|
27 |
##########################################
|
28 |
# Step 1:情感分析 - 分析用户评论的情感倾向
|
29 |
##########################################
|
30 |
+
# Perform tasks when the user clicks the "Comment" button
|
31 |
+
if st.button("Comment"):
|
32 |
|
33 |
pipe = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base")
|
34 |
|
|
|
46 |
emotion_results = emotion_classifier(user_review)[0] # 返回列表中的第一个结果(单条输入)
|
47 |
|
48 |
# 打印所有情感维度及其分数
|
49 |
+
|
50 |
print("情感分析结果(多维度):")
|
51 |
for emotion in emotion_results:
|
52 |
print(f"{emotion['label']}: {emotion['score']:.4f}")
|
53 |
+
|
54 |
+
st.write("Text:", text)
|
55 |
+
st.write("Label:", max_label)
|
56 |
+
st.write("Score:", max_score)
|
57 |
+
|
58 |
# 提取置信度最高的情感标签(可选)
|
59 |
dominant_emotion = max(emotion_results, key=lambda x: x['score'])
|
60 |
print("\n主导情感:", dominant_emotion['label'], f"(置信度: {dominant_emotion['score']:.2f})")
|