Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,56 +1,188 @@
|
|
1 |
-
|
2 |
!pip install --upgrade transformers
|
3 |
-
!pip install
|
4 |
|
5 |
-
|
6 |
-
|
|
|
|
|
|
|
|
|
7 |
from IPython.display import Audio, display
|
8 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
##########################################
|
11 |
# Step 1:情感分析 - 分析用户评论的情感倾向
|
12 |
##########################################
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
# 示例用户评论(可替换为实际评论)
|
17 |
user_review = "I love the fast delivery, but the product quality could be better."
|
18 |
|
19 |
-
#
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
##########################################
|
24 |
# Step 2:回复生成 - 根据情感生成自动回复
|
25 |
##########################################
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
print(prompt)
|
43 |
|
44 |
-
# 生成回复文本,设置 truncation=True 避免长度问题,并适当提高采样温度与 top_p 值
|
45 |
-
generated = reply_generator(prompt, max_length=150, do_sample=True, top_p=0.95, temperature=0.9, truncation=True)
|
46 |
|
47 |
-
generated_text = generated[0]['generated_text']
|
48 |
|
49 |
-
# 如果生成结果包含完整 prompt,则剔除
|
50 |
-
if generated_text.startswith(prompt):
|
51 |
-
final_reply = generated_text[len(prompt):].strip()
|
52 |
-
else:
|
53 |
-
final_reply = generated_text.strip()
|
54 |
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!pip install huggingface_hub
|
2 |
!pip install --upgrade transformers
|
3 |
+
!pip install datasets soundfile
|
4 |
|
5 |
+
##########################################
|
6 |
+
# Step 0: 导入必需的库
|
7 |
+
##########################################
|
8 |
+
|
9 |
+
from transformers import pipeline, SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan, AutoModelForCausalLM, AutoTokenizer, pipeline
|
10 |
+
from datasets import load_dataset
|
11 |
from IPython.display import Audio, display
|
12 |
import torch
|
13 |
+
import soundfile as sf
|
14 |
+
|
15 |
+
from google.colab import drive
|
16 |
+
|
17 |
+
from huggingface_hub import login
|
18 |
+
|
19 |
|
20 |
##########################################
|
21 |
# Step 1:情感分析 - 分析用户评论的情感倾向
|
22 |
##########################################
|
23 |
+
|
24 |
+
pipe = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base")
|
25 |
+
|
26 |
+
# 使用 "j-hartmann/emotion-english-distilroberta-base" 模型进行多维度情感分类
|
27 |
+
emotion_classifier = pipeline(
|
28 |
+
"text-classification",
|
29 |
+
model="j-hartmann/emotion-english-distilroberta-base",
|
30 |
+
return_all_scores=True
|
31 |
+
)
|
32 |
|
33 |
# 示例用户评论(可替换为实际评论)
|
34 |
user_review = "I love the fast delivery, but the product quality could be better."
|
35 |
|
36 |
+
# 对评论进行情感分析
|
37 |
+
emotion_results = emotion_classifier(user_review)[0] # 返回列表中的第一个结果(单条输入)
|
38 |
+
|
39 |
+
# 打印所有情感维度及其分数
|
40 |
+
print("情感分析结果(多维度):")
|
41 |
+
for emotion in emotion_results:
|
42 |
+
print(f"{emotion['label']}: {emotion['score']:.4f}")
|
43 |
+
|
44 |
+
# 提取置信度最高的情感标签(可选)
|
45 |
+
dominant_emotion = max(emotion_results, key=lambda x: x['score'])
|
46 |
+
print("\n主导情感:", dominant_emotion['label'], f"(置信度: {dominant_emotion['score']:.2f})")
|
47 |
+
|
48 |
+
|
49 |
|
50 |
##########################################
|
51 |
# Step 2:回复生成 - 根据情感生成自动回复
|
52 |
##########################################
|
53 |
+
|
54 |
+
emotion_strategies = {
|
55 |
+
"anger": {
|
56 |
+
"prompt": (
|
57 |
+
"Customer complaint: '{review}'\n\n"
|
58 |
+
"As a customer service representative, craft a professional response that:\n"
|
59 |
+
"- Begins with sincere apology and acknowledgment\n"
|
60 |
+
"- Clearly explains solution process with concrete steps\n"
|
61 |
+
"- Offers appropriate compensation/redemption\n"
|
62 |
+
"- Keeps tone humble and solution-focused (3-4 sentences)\n\n"
|
63 |
+
"Response:"
|
64 |
+
)
|
65 |
+
},
|
66 |
+
"disgust": {
|
67 |
+
"prompt": (
|
68 |
+
"Customer quality concern: '{review}'\n\n"
|
69 |
+
"As a customer service representative, craft a response that:\n"
|
70 |
+
"- Immediately acknowledges the product issue\n"
|
71 |
+
"- Explains quality control measures being taken\n"
|
72 |
+
"- Provides clear return/replacement instructions\n"
|
73 |
+
"- Offers goodwill gesture (3-4 sentences)\n\n"
|
74 |
+
"Response:"
|
75 |
+
)
|
76 |
+
},
|
77 |
+
"fear": {
|
78 |
+
"prompt": (
|
79 |
+
"Customer safety concern: '{review}'\n\n"
|
80 |
+
"As a customer service representative, craft a reassuring response that:\n"
|
81 |
+
"- Directly addresses the safety worries\n"
|
82 |
+
"- References relevant certifications/standards\n"
|
83 |
+
"- Offers dedicated support contact\n"
|
84 |
+
"- Provides satisfaction guarantee (3-4 sentences)\n\n"
|
85 |
+
"Response:"
|
86 |
+
)
|
87 |
+
},
|
88 |
+
"joy": {
|
89 |
+
"prompt": (
|
90 |
+
"Customer review: '{review}'\n\n"
|
91 |
+
"As a customer service representative, craft a concise response that:\n"
|
92 |
+
"- Specifically acknowledges both positive and constructive feedback\n"
|
93 |
+
"- Briefly mentions loyalty/referral programs\n"
|
94 |
+
"- Ends with shopping invitation (3-4 sentences)\n\n"
|
95 |
+
"Response:"
|
96 |
+
)
|
97 |
+
},
|
98 |
+
"neutral": {
|
99 |
+
"prompt": (
|
100 |
+
"Customer feedback: '{review}'\n\n"
|
101 |
+
"As a customer service representative, craft a balanced response that:\n"
|
102 |
+
"- Provides additional relevant product information\n"
|
103 |
+
"- Highlights key service features\n"
|
104 |
+
"- Politely requests more detailed feedback\n"
|
105 |
+
"- Maintains professional tone (3-4 sentences)\n\n"
|
106 |
+
"Response:"
|
107 |
+
)
|
108 |
+
},
|
109 |
+
"sadness": {
|
110 |
+
"prompt": (
|
111 |
+
"Customer disappointment: '{review}'\n\n"
|
112 |
+
"As a customer service representative, craft an empathetic response that:\n"
|
113 |
+
"- Shows genuine understanding of the issue\n"
|
114 |
+
"- Proposes personalized recovery solution\n"
|
115 |
+
"- Offers extended support options\n"
|
116 |
+
"- Maintains positive outlook (3-4 sentences)\n\n"
|
117 |
+
"Response:"
|
118 |
+
)
|
119 |
+
},
|
120 |
+
"surprise": {
|
121 |
+
"prompt": (
|
122 |
+
"Customer enthusiastic feedback: '{review}'\n\n"
|
123 |
+
"As a customer service representative, craft a response that:\n"
|
124 |
+
"- Matches customer's positive energy appropriately\n"
|
125 |
+
"- Highlights unexpected product benefits\n"
|
126 |
+
"- Invites to user community/events\n"
|
127 |
+
"- Maintains brand voice (3-4 sentences)\n\n"
|
128 |
+
"Response:"
|
129 |
+
)
|
130 |
+
}
|
131 |
+
}
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
# 生成回复Prompt
|
136 |
+
template = emotion_strategies[dominant_emotion['label'].lower()]["prompt"]
|
137 |
+
prompt = template.format(review=user_review)
|
138 |
print(prompt)
|
139 |
|
|
|
|
|
140 |
|
|
|
141 |
|
|
|
|
|
|
|
|
|
|
|
142 |
|
143 |
+
# 加载Llama-3作为text generation模型
|
144 |
+
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-1B")
|
145 |
+
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.2-1B")
|
146 |
+
|
147 |
+
|
148 |
+
|
149 |
+
|
150 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
151 |
+
outputs = model.generate(**inputs, max_new_tokens=100)
|
152 |
+
|
153 |
+
input_length = inputs.input_ids.shape[1]
|
154 |
+
response = tokenizer.decode(outputs[0][input_length:], skip_special_tokens=True)
|
155 |
+
print(response)
|
156 |
+
|
157 |
+
|
158 |
+
|
159 |
+
|
160 |
+
##########################################
|
161 |
+
# Step 3:语音生成 - 根据回复合成语音
|
162 |
+
##########################################
|
163 |
+
|
164 |
+
# 加载模型和处理器
|
165 |
+
#processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
166 |
+
#speech_model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")
|
167 |
+
#vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
168 |
+
|
169 |
+
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
170 |
+
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")
|
171 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
172 |
+
|
173 |
+
# 创建默认的说话人嵌入
|
174 |
+
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
175 |
+
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) # 女性中性语音
|
176 |
+
|
177 |
+
# 文本预处理和语音合成
|
178 |
+
inputs = processor(text=response, return_tensors="pt")
|
179 |
+
spectrogram = model.generate_speech(inputs["input_ids"], speaker_embeddings)
|
180 |
+
|
181 |
+
# 使用声码器生成波形音频
|
182 |
+
with torch.no_grad():
|
183 |
+
speech = vocoder(spectrogram)
|
184 |
+
|
185 |
+
# 保存为WAV文件(16kHz采样率)
|
186 |
+
sf.write("customer_service_response.wav", speech.numpy(), samplerate=16000)
|
187 |
+
|
188 |
+
print("语音生成完成,已保存为 customer_service_response.wav")
|