Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,201 +1,128 @@
|
|
1 |
##########################################
|
2 |
-
# Step 0:
|
3 |
##########################################
|
4 |
-
import streamlit as st
|
5 |
-
from transformers import
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
from
|
14 |
-
|
15 |
-
#
|
16 |
-
st.title("Comment reply for you")
|
17 |
-
st.write("automative reply")
|
18 |
-
|
19 |
-
# Text input for user to enter the comment
|
20 |
-
text = st.text_area("Enter your comment", "")
|
21 |
|
22 |
##########################################
|
23 |
-
#
|
24 |
##########################################
|
|
|
|
|
|
|
25 |
|
26 |
-
|
|
|
|
|
27 |
def analyze_dominant_emotion(user_review):
|
28 |
-
|
|
|
|
|
29 |
emotion_classifier = pipeline(
|
30 |
-
|
31 |
-
|
32 |
return_all_scores=True
|
33 |
-
|
34 |
-
|
35 |
-
# Get emotion
|
36 |
-
emotion_results =
|
37 |
-
|
38 |
-
# Extract the emotion with highest confidence score
|
39 |
-
dominant_emotion = max(emotion_results, key=lambda x: x['score'])
|
40 |
-
|
41 |
return dominant_emotion
|
42 |
|
43 |
-
# 提取置信度最高的情感标签(可选)
|
44 |
-
# dominant_emotion = analyze_dominant_emotion(user_review)
|
45 |
-
# print("\n主导情感:", dominant_emotion['label'], f"(置信度: {dominant_emotion['score']:.2f})")
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
##########################################
|
50 |
-
# Step 2
|
51 |
##########################################
|
52 |
-
|
53 |
-
|
54 |
-
def prompt_gen(user_review):
|
55 |
-
dominant_emotion = analyze_dominant_emotion(user_review)
|
56 |
-
emotion_strategies = {
|
57 |
-
"anger": {
|
58 |
-
"prompt": (
|
59 |
-
"Customer complaint: '{review}'\n\n"
|
60 |
-
"As a customer service representative, craft a professional response that:\n"
|
61 |
-
"- Begins with sincere apology and acknowledgment\n"
|
62 |
-
"- Clearly explains solution process with concrete steps\n"
|
63 |
-
"- Offers appropriate compensation/redemption\n"
|
64 |
-
"- Keeps tone humble and solution-focused (3-4 sentences)\n\n"
|
65 |
-
"Response:"
|
66 |
-
)
|
67 |
-
},
|
68 |
-
"disgust": {
|
69 |
-
"prompt": (
|
70 |
-
"Customer quality concern: '{review}'\n\n"
|
71 |
-
"As a customer service representative, craft a response that:\n"
|
72 |
-
"- Immediately acknowledges the product issue\n"
|
73 |
-
"- Explains quality control measures being taken\n"
|
74 |
-
"- Provides clear return/replacement instructions\n"
|
75 |
-
"- Offers goodwill gesture (3-4 sentences)\n\n"
|
76 |
-
"Response:"
|
77 |
-
)
|
78 |
-
},
|
79 |
-
"fear": {
|
80 |
-
"prompt": (
|
81 |
-
"Customer safety concern: '{review}'\n\n"
|
82 |
-
"As a customer service representative, craft a reassuring response that:\n"
|
83 |
-
"- Directly addresses the safety worries\n"
|
84 |
-
"- References relevant certifications/standards\n"
|
85 |
-
"- Offers dedicated support contact\n"
|
86 |
-
"- Provides satisfaction guarantee (3-4 sentences)\n\n"
|
87 |
-
"Response:"
|
88 |
-
)
|
89 |
-
},
|
90 |
-
"joy": {
|
91 |
-
"prompt": (
|
92 |
-
"Customer review: '{review}'\n\n"
|
93 |
-
"As a customer service representative, craft a concise response that:\n"
|
94 |
-
"- Specifically acknowledges both positive and constructive feedback\n"
|
95 |
-
"- Briefly mentions loyalty/referral programs\n"
|
96 |
-
"- Ends with shopping invitation (3-4 sentences)\n\n"
|
97 |
-
"Response:"
|
98 |
-
)
|
99 |
-
},
|
100 |
-
"neutral": {
|
101 |
-
"prompt": (
|
102 |
-
"Customer feedback: '{review}'\n\n"
|
103 |
-
"As a customer service representative, craft a balanced response that:\n"
|
104 |
-
"- Provides additional relevant product information\n"
|
105 |
-
"- Highlights key service features\n"
|
106 |
-
"- Politely requests more detailed feedback\n"
|
107 |
-
"- Maintains professional tone (3-4 sentences)\n\n"
|
108 |
-
"Response:"
|
109 |
-
)
|
110 |
-
},
|
111 |
-
"sadness": {
|
112 |
-
"prompt": (
|
113 |
-
"Customer disappointment: '{review}'\n\n"
|
114 |
-
"As a customer service representative, craft an empathetic response that:\n"
|
115 |
-
"- Shows genuine understanding of the issue\n"
|
116 |
-
"- Proposes personalized recovery solution\n"
|
117 |
-
"- Offers extended support options\n"
|
118 |
-
"- Maintains positive outlook (3-4 sentences)\n\n"
|
119 |
-
"Response:"
|
120 |
-
)
|
121 |
-
},
|
122 |
-
"surprise": {
|
123 |
-
"prompt": (
|
124 |
-
"Customer enthusiastic feedback: '{review}'\n\n"
|
125 |
-
"As a customer service representative, craft a response that:\n"
|
126 |
-
"- Matches customer's positive energy appropriately\n"
|
127 |
-
"- Highlights unexpected product benefits\n"
|
128 |
-
"- Invites to user community/events\n"
|
129 |
-
"- Maintains brand voice (3-4 sentences)\n\n"
|
130 |
-
"Response:"
|
131 |
-
)
|
132 |
-
}
|
133 |
-
}
|
134 |
-
# 生成回复Prompt
|
135 |
-
template = emotion_strategies[dominant_emotion['label'].lower()]["prompt"]
|
136 |
-
prompt = template.format(review=user_review)
|
137 |
-
print(prompt)
|
138 |
-
return prompt
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
def response_gen(user_review):
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
##########################################
|
158 |
-
# Step 3
|
159 |
##########################################
|
160 |
def sound_gen(response):
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
print("语音生成完成,已保存为 customer_service_response.wav")
|
186 |
-
return
|
187 |
-
|
188 |
-
|
189 |
-
st.write("customer_service_response.wav", speech.numpy(), samplerate=16000)
|
190 |
-
st.text("I wanna tell you that")
|
191 |
-
st.audio("customer_service_response.wav")
|
192 |
|
|
|
|
|
|
|
193 |
def main():
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
|
|
|
|
|
|
200 |
if __name__ == "__main__":
|
201 |
-
main()
|
|
|
1 |
##########################################
|
2 |
+
# Step 0: Import required libraries
|
3 |
##########################################
|
4 |
+
import streamlit as st # For building the web application
|
5 |
+
from transformers import (
|
6 |
+
pipeline,
|
7 |
+
SpeechT5Processor,
|
8 |
+
SpeechT5ForTextToSpeech,
|
9 |
+
SpeechT5HifiGan,
|
10 |
+
AutoModelForCausalLM,
|
11 |
+
AutoTokenizer
|
12 |
+
) # For emotion analysis, text-to-speech, and text generation
|
13 |
+
from datasets import load_dataset # For loading datasets (e.g., speaker embeddings)
|
14 |
+
import torch # For tensor operations
|
15 |
+
import soundfile as sf # For saving audio as .wav files
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
##########################################
|
18 |
+
# Streamlit application title and input
|
19 |
##########################################
|
20 |
+
st.title("Comment Reply for You") # Application title
|
21 |
+
st.write("Generate automatic replies for user comments") # Application description
|
22 |
+
text = st.text_area("Enter your comment", "") # Text input for user to enter comments
|
23 |
|
24 |
+
##########################################
|
25 |
+
# Step 1: Sentiment Analysis Function
|
26 |
+
##########################################
|
27 |
def analyze_dominant_emotion(user_review):
|
28 |
+
"""
|
29 |
+
Analyze the dominant emotion in the user's review using a text classification model.
|
30 |
+
"""
|
31 |
emotion_classifier = pipeline(
|
32 |
+
"text-classification",
|
33 |
+
model="Thea231/jhartmann_emotion_finetuning",
|
34 |
return_all_scores=True
|
35 |
+
) # Load pre-trained emotion classification model
|
36 |
+
|
37 |
+
emotion_results = emotion_classifier(user_review)[0] # Get emotion scores for the review
|
38 |
+
dominant_emotion = max(emotion_results, key=lambda x: x['score']) # Find the emotion with the highest confidence
|
|
|
|
|
|
|
|
|
39 |
return dominant_emotion
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
##########################################
|
42 |
+
# Step 2: Response Generation Function
|
43 |
##########################################
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
def response_gen(user_review):
|
45 |
+
"""
|
46 |
+
Generate a response based on the sentiment of the user's review.
|
47 |
+
"""
|
48 |
+
# Use Llama-based model to create a response based on a generated prompt
|
49 |
+
dominant_emotion = analyze_dominant_emotion(user_review) # Get the dominant emotion
|
50 |
+
emotion_label = dominant_emotion['label'].lower() # Extract emotion label
|
51 |
+
|
52 |
+
# Define response templates for each emotion
|
53 |
+
emotion_prompts = {
|
54 |
+
"anger": (
|
55 |
+
"Customer complaint: '{review}'\n\n"
|
56 |
+
"As a customer service representative, write a response that:\n"
|
57 |
+
"- Sincerely apologizes for the issue\n"
|
58 |
+
"- Explains how the issue will be resolved\n"
|
59 |
+
"- Offers compensation where appropriate\n\n"
|
60 |
+
"Response:"
|
61 |
+
),
|
62 |
+
"joy": (
|
63 |
+
"Customer review: '{review}'\n\n"
|
64 |
+
"As a customer service representative, write a positive response that:\n"
|
65 |
+
"- Thanks the customer for their feedback\n"
|
66 |
+
"- Acknowledges both positive and constructive comments\n"
|
67 |
+
"- Invites them to explore loyalty programs\n\n"
|
68 |
+
"Response:"
|
69 |
+
),
|
70 |
+
# Add other emotions as needed...
|
71 |
+
}
|
72 |
+
|
73 |
+
# Format the prompt with the user's review
|
74 |
+
prompt = emotion_prompts.get(emotion_label, "Neutral").format(review=user_review)
|
75 |
+
|
76 |
+
# Load a pre-trained text generation model (replace 'meta-llama/Llama-3.2-1B' with an available model)
|
77 |
+
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-1B")
|
78 |
+
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.2-1B")
|
79 |
+
inputs = tokenizer(prompt, return_tensors="pt") # Tokenize the prompt
|
80 |
+
outputs = model.generate(**inputs, max_new_tokens=100) # Generate a response
|
81 |
+
|
82 |
+
input_length = inputs.input_ids.shape[1] # Length of the input text
|
83 |
+
response = tokenizer.decode(outputs[0][input_length:], skip_special_tokens=True) # Decode the generated text
|
84 |
+
return response
|
85 |
|
86 |
##########################################
|
87 |
+
# Step 3: Text-to-Speech Conversion Function
|
88 |
##########################################
|
89 |
def sound_gen(response):
|
90 |
+
"""
|
91 |
+
Convert the generated response to speech and save as a .wav file.
|
92 |
+
"""
|
93 |
+
# Load the pre-trained TTS models
|
94 |
+
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
95 |
+
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")
|
96 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
97 |
+
|
98 |
+
# Load speaker embeddings (e.g., neutral female voice)
|
99 |
+
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
100 |
+
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
101 |
+
|
102 |
+
# Process the input text and generate a spectrogram
|
103 |
+
inputs = processor(text=response, return_tensors="pt")
|
104 |
+
spectrogram = model.generate_speech(inputs["input_ids"], speaker_embeddings)
|
105 |
+
|
106 |
+
# Use the vocoder to generate a waveform
|
107 |
+
with torch.no_grad():
|
108 |
+
speech = vocoder(spectrogram)
|
109 |
+
|
110 |
+
# Save the generated speech as a .wav file
|
111 |
+
sf.write("customer_service_response.wav", speech.numpy(), samplerate=16000)
|
112 |
+
st.audio("customer_service_response.wav") # Play the audio in Streamlit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
|
114 |
+
##########################################
|
115 |
+
# Main Function
|
116 |
+
##########################################
|
117 |
def main():
|
118 |
+
"""
|
119 |
+
Main function to orchestrate the workflow of sentiment analysis, response generation, and text-to-speech.
|
120 |
+
"""
|
121 |
+
if text: # Check if the user entered a comment
|
122 |
+
response = response_gen(text) # Generate a response
|
123 |
+
st.write(f"Generated response: {response}") # Display the generated response
|
124 |
+
sound_gen(response) # Convert the response to speech and play it
|
125 |
+
|
126 |
+
# Run the main function
|
127 |
if __name__ == "__main__":
|
128 |
+
main()
|