Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -19,41 +19,40 @@ st.write("automative reply")
|
|
19 |
# Text input for user to enter the comment
|
20 |
text = st.text_area("Enter your comment", "")
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
##########################################
|
24 |
# Step 1:情感分析 - 分析用户评论的情感倾向
|
25 |
##########################################
|
26 |
-
# Perform tasks when the user clicks the "Comment" button
|
27 |
-
if st.button("Comment"):
|
28 |
|
29 |
-
pipe = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base")
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
37 |
|
38 |
-
#
|
39 |
-
|
40 |
|
41 |
-
#
|
42 |
-
emotion_results =
|
43 |
|
44 |
-
|
45 |
|
46 |
-
print("情感分析结果(多维度):")
|
47 |
-
for emotion in emotion_results:
|
48 |
-
print(f"{emotion['label']}: {emotion['score']:.4f}")
|
49 |
-
|
50 |
-
st.write("Text:", text)
|
51 |
-
st.write("Label:", max_label)
|
52 |
-
st.write("Score:", max_score)
|
53 |
-
|
54 |
# 提取置信度最高的情感标签(可选)
|
55 |
-
dominant_emotion =
|
56 |
-
print("\n主导情感:", dominant_emotion['label'], f"(置信度: {dominant_emotion['score']:.2f})")
|
57 |
|
58 |
|
59 |
|
@@ -61,139 +60,146 @@ print("\n主导情感:", dominant_emotion['label'], f"(置信度: {dominant_em
|
|
61 |
# Step 2:回复生成 - 根据情感生成自动回复
|
62 |
##########################################
|
63 |
|
64 |
-
emotion_strategies = {
|
65 |
-
"anger": {
|
66 |
-
"prompt": (
|
67 |
-
"Customer complaint: '{review}'\n\n"
|
68 |
-
"As a customer service representative, craft a professional response that:\n"
|
69 |
-
"- Begins with sincere apology and acknowledgment\n"
|
70 |
-
"- Clearly explains solution process with concrete steps\n"
|
71 |
-
"- Offers appropriate compensation/redemption\n"
|
72 |
-
"- Keeps tone humble and solution-focused (3-4 sentences)\n\n"
|
73 |
-
"Response:"
|
74 |
-
)
|
75 |
-
},
|
76 |
-
"disgust": {
|
77 |
-
"prompt": (
|
78 |
-
"Customer quality concern: '{review}'\n\n"
|
79 |
-
"As a customer service representative, craft a response that:\n"
|
80 |
-
"- Immediately acknowledges the product issue\n"
|
81 |
-
"- Explains quality control measures being taken\n"
|
82 |
-
"- Provides clear return/replacement instructions\n"
|
83 |
-
"- Offers goodwill gesture (3-4 sentences)\n\n"
|
84 |
-
"Response:"
|
85 |
-
)
|
86 |
-
},
|
87 |
-
"fear": {
|
88 |
-
"prompt": (
|
89 |
-
"Customer safety concern: '{review}'\n\n"
|
90 |
-
"As a customer service representative, craft a reassuring response that:\n"
|
91 |
-
"- Directly addresses the safety worries\n"
|
92 |
-
"- References relevant certifications/standards\n"
|
93 |
-
"- Offers dedicated support contact\n"
|
94 |
-
"- Provides satisfaction guarantee (3-4 sentences)\n\n"
|
95 |
-
"Response:"
|
96 |
-
)
|
97 |
-
},
|
98 |
-
"joy": {
|
99 |
-
"prompt": (
|
100 |
-
"Customer review: '{review}'\n\n"
|
101 |
-
"As a customer service representative, craft a concise response that:\n"
|
102 |
-
"- Specifically acknowledges both positive and constructive feedback\n"
|
103 |
-
"- Briefly mentions loyalty/referral programs\n"
|
104 |
-
"- Ends with shopping invitation (3-4 sentences)\n\n"
|
105 |
-
"Response:"
|
106 |
-
)
|
107 |
-
},
|
108 |
-
"neutral": {
|
109 |
-
"prompt": (
|
110 |
-
"Customer feedback: '{review}'\n\n"
|
111 |
-
"As a customer service representative, craft a balanced response that:\n"
|
112 |
-
"- Provides additional relevant product information\n"
|
113 |
-
"- Highlights key service features\n"
|
114 |
-
"- Politely requests more detailed feedback\n"
|
115 |
-
"- Maintains professional tone (3-4 sentences)\n\n"
|
116 |
-
"Response:"
|
117 |
-
)
|
118 |
-
},
|
119 |
-
"sadness": {
|
120 |
-
"prompt": (
|
121 |
-
"Customer disappointment: '{review}'\n\n"
|
122 |
-
"As a customer service representative, craft an empathetic response that:\n"
|
123 |
-
"- Shows genuine understanding of the issue\n"
|
124 |
-
"- Proposes personalized recovery solution\n"
|
125 |
-
"- Offers extended support options\n"
|
126 |
-
"- Maintains positive outlook (3-4 sentences)\n\n"
|
127 |
-
"Response:"
|
128 |
-
)
|
129 |
-
},
|
130 |
-
"surprise": {
|
131 |
-
"prompt": (
|
132 |
-
"Customer enthusiastic feedback: '{review}'\n\n"
|
133 |
-
"As a customer service representative, craft a response that:\n"
|
134 |
-
"- Matches customer's positive energy appropriately\n"
|
135 |
-
"- Highlights unexpected product benefits\n"
|
136 |
-
"- Invites to user community/events\n"
|
137 |
-
"- Maintains brand voice (3-4 sentences)\n\n"
|
138 |
-
"Response:"
|
139 |
-
)
|
140 |
-
}
|
141 |
-
}
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
# 生成回复Prompt
|
146 |
-
template = emotion_strategies[dominant_emotion['label'].lower()]["prompt"]
|
147 |
-
prompt = template.format(review=user_review)
|
148 |
-
print(prompt)
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
# 加载Llama-3作为text generation模型
|
154 |
-
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-1B")
|
155 |
-
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.2-1B")
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
inputs = tokenizer(prompt, return_tensors="pt")
|
161 |
-
outputs = model.generate(**inputs, max_new_tokens=100)
|
162 |
-
|
163 |
-
input_length = inputs.input_ids.shape[1]
|
164 |
-
response = tokenizer.decode(outputs[0][input_length:], skip_special_tokens=True)
|
165 |
-
print(response)
|
166 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
|
168 |
|
169 |
|
170 |
##########################################
|
171 |
# Step 3:语音生成 - 根据回复合成语音
|
172 |
##########################################
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
|
174 |
-
#
|
175 |
-
|
176 |
-
|
177 |
-
#vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
178 |
|
179 |
-
|
180 |
-
|
181 |
-
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
182 |
|
183 |
-
|
184 |
-
|
185 |
-
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) # 女性中性语音
|
186 |
|
187 |
-
# 文本预处理和语音合成
|
188 |
-
inputs = processor(text=response, return_tensors="pt")
|
189 |
-
spectrogram = model.generate_speech(inputs["input_ids"], speaker_embeddings)
|
190 |
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
|
195 |
-
# 保存为WAV文件(16kHz采样率)
|
196 |
-
sf.write("customer_service_response.wav", speech.numpy(), samplerate=16000)
|
197 |
-
st.text("I wanna tell you that")
|
198 |
-
st.audio("customer_service_response.wav")
|
199 |
|
|
|
|
|
|
19 |
# Text input for user to enter the comment
|
20 |
text = st.text_area("Enter your comment", "")
|
21 |
|
22 |
+
def main():
|
23 |
+
user_review = "I love the fast delivery, but the product quality could be better."
|
24 |
+
response = response_gen(user_review)
|
25 |
+
print(response)
|
26 |
+
sound_gen(response)
|
27 |
+
return
|
28 |
+
|
29 |
+
|
30 |
+
if st.button("Comment"):
|
31 |
|
32 |
##########################################
|
33 |
# Step 1:情感分析 - 分析用户评论的情感倾向
|
34 |
##########################################
|
|
|
|
|
35 |
|
|
|
36 |
|
37 |
+
def analyze_dominant_emotion(user_review):
|
38 |
+
# Initialize the emotion classifier pipeline
|
39 |
+
emotion_classifier = pipeline(
|
40 |
+
"text-classification",
|
41 |
+
model="Thea231/jhartmann_emotion_finetuning",
|
42 |
+
return_all_scores=True
|
43 |
+
)
|
44 |
|
45 |
+
# Get emotion predictions for the input review
|
46 |
+
emotion_results = emotion_classifier(user_review)[0] # Get first result (single input case)
|
47 |
|
48 |
+
# Extract the emotion with highest confidence score
|
49 |
+
dominant_emotion = max(emotion_results, key=lambda x: x['score'])
|
50 |
|
51 |
+
return dominant_emotion
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
# 提取置信度最高的情感标签(可选)
|
54 |
+
# dominant_emotion = analyze_dominant_emotion(user_review)
|
55 |
+
# print("\n主导情感:", dominant_emotion['label'], f"(置信度: {dominant_emotion['score']:.2f})")
|
56 |
|
57 |
|
58 |
|
|
|
60 |
# Step 2:回复生成 - 根据情感生成自动回复
|
61 |
##########################################
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
+
def prompt_gen(user_review):
|
65 |
+
dominant_emotion = analyze_dominant_emotion(user_review)
|
66 |
+
emotion_strategies = {
|
67 |
+
"anger": {
|
68 |
+
"prompt": (
|
69 |
+
"Customer complaint: '{review}'\n\n"
|
70 |
+
"As a customer service representative, craft a professional response that:\n"
|
71 |
+
"- Begins with sincere apology and acknowledgment\n"
|
72 |
+
"- Clearly explains solution process with concrete steps\n"
|
73 |
+
"- Offers appropriate compensation/redemption\n"
|
74 |
+
"- Keeps tone humble and solution-focused (3-4 sentences)\n\n"
|
75 |
+
"Response:"
|
76 |
+
)
|
77 |
+
},
|
78 |
+
"disgust": {
|
79 |
+
"prompt": (
|
80 |
+
"Customer quality concern: '{review}'\n\n"
|
81 |
+
"As a customer service representative, craft a response that:\n"
|
82 |
+
"- Immediately acknowledges the product issue\n"
|
83 |
+
"- Explains quality control measures being taken\n"
|
84 |
+
"- Provides clear return/replacement instructions\n"
|
85 |
+
"- Offers goodwill gesture (3-4 sentences)\n\n"
|
86 |
+
"Response:"
|
87 |
+
)
|
88 |
+
},
|
89 |
+
"fear": {
|
90 |
+
"prompt": (
|
91 |
+
"Customer safety concern: '{review}'\n\n"
|
92 |
+
"As a customer service representative, craft a reassuring response that:\n"
|
93 |
+
"- Directly addresses the safety worries\n"
|
94 |
+
"- References relevant certifications/standards\n"
|
95 |
+
"- Offers dedicated support contact\n"
|
96 |
+
"- Provides satisfaction guarantee (3-4 sentences)\n\n"
|
97 |
+
"Response:"
|
98 |
+
)
|
99 |
+
},
|
100 |
+
"joy": {
|
101 |
+
"prompt": (
|
102 |
+
"Customer review: '{review}'\n\n"
|
103 |
+
"As a customer service representative, craft a concise response that:\n"
|
104 |
+
"- Specifically acknowledges both positive and constructive feedback\n"
|
105 |
+
"- Briefly mentions loyalty/referral programs\n"
|
106 |
+
"- Ends with shopping invitation (3-4 sentences)\n\n"
|
107 |
+
"Response:"
|
108 |
+
)
|
109 |
+
},
|
110 |
+
"neutral": {
|
111 |
+
"prompt": (
|
112 |
+
"Customer feedback: '{review}'\n\n"
|
113 |
+
"As a customer service representative, craft a balanced response that:\n"
|
114 |
+
"- Provides additional relevant product information\n"
|
115 |
+
"- Highlights key service features\n"
|
116 |
+
"- Politely requests more detailed feedback\n"
|
117 |
+
"- Maintains professional tone (3-4 sentences)\n\n"
|
118 |
+
"Response:"
|
119 |
+
)
|
120 |
+
},
|
121 |
+
"sadness": {
|
122 |
+
"prompt": (
|
123 |
+
"Customer disappointment: '{review}'\n\n"
|
124 |
+
"As a customer service representative, craft an empathetic response that:\n"
|
125 |
+
"- Shows genuine understanding of the issue\n"
|
126 |
+
"- Proposes personalized recovery solution\n"
|
127 |
+
"- Offers extended support options\n"
|
128 |
+
"- Maintains positive outlook (3-4 sentences)\n\n"
|
129 |
+
"Response:"
|
130 |
+
)
|
131 |
+
},
|
132 |
+
"surprise": {
|
133 |
+
"prompt": (
|
134 |
+
"Customer enthusiastic feedback: '{review}'\n\n"
|
135 |
+
"As a customer service representative, craft a response that:\n"
|
136 |
+
"- Matches customer's positive energy appropriately\n"
|
137 |
+
"- Highlights unexpected product benefits\n"
|
138 |
+
"- Invites to user community/events\n"
|
139 |
+
"- Maintains brand voice (3-4 sentences)\n\n"
|
140 |
+
"Response:"
|
141 |
+
)
|
142 |
+
}
|
143 |
+
}
|
144 |
+
# 生成回复Prompt
|
145 |
+
template = emotion_strategies[dominant_emotion['label'].lower()]["prompt"]
|
146 |
+
prompt = template.format(review=user_review)
|
147 |
+
print(prompt)
|
148 |
+
return prompt
|
149 |
+
|
150 |
+
|
151 |
+
|
152 |
+
def response_gen(user_review):
|
153 |
+
prompt = prompt_gen(user_review)
|
154 |
+
# 加载Llama-3作为text generation模型
|
155 |
+
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-1B")
|
156 |
+
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.2-1B")
|
157 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
158 |
+
outputs = model.generate(**inputs, max_new_tokens=100)
|
159 |
+
|
160 |
+
input_length = inputs.input_ids.shape[1]
|
161 |
+
response = tokenizer.decode(outputs[0][input_length:], skip_special_tokens=True)
|
162 |
+
# print(response)
|
163 |
+
return response
|
164 |
|
165 |
|
166 |
|
167 |
##########################################
|
168 |
# Step 3:语音生成 - 根据回复合成语音
|
169 |
##########################################
|
170 |
+
def sound_gen(response):
|
171 |
+
# 加载模型和处理器
|
172 |
+
#processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
173 |
+
#speech_model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")
|
174 |
+
#vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
175 |
+
|
176 |
+
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
177 |
+
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")
|
178 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
179 |
+
|
180 |
+
# 创建默认的说话人嵌入
|
181 |
+
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
182 |
+
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) # 女性中性语音
|
183 |
+
|
184 |
+
# 文本预处理和语音合成
|
185 |
+
inputs = processor(text=response, return_tensors="pt")
|
186 |
+
spectrogram = model.generate_speech(inputs["input_ids"], speaker_embeddings)
|
187 |
|
188 |
+
# 使用声码器生成波形音频
|
189 |
+
with torch.no_grad():
|
190 |
+
speech = vocoder(spectrogram)
|
|
|
191 |
|
192 |
+
# 保存为WAV文件(16kHz采样率)
|
193 |
+
sf.write("customer_service_response.wav", speech.numpy(), samplerate=16000)
|
|
|
194 |
|
195 |
+
print("语音生成完成,已保存为 customer_service_response.wav")
|
196 |
+
return
|
|
|
197 |
|
|
|
|
|
|
|
198 |
|
199 |
+
sf.write("customer_service_response.wav", speech.numpy(), samplerate=16000)
|
200 |
+
st.text("I wanna tell you that")
|
201 |
+
st.audio("customer_service_response.wav")
|
202 |
|
|
|
|
|
|
|
|
|
203 |
|
204 |
+
if __name__ == "__main__":
|
205 |
+
main()
|