Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
##########################################
|
2 |
# Step 0: Import required libraries
|
3 |
##########################################
|
4 |
-
import streamlit as st # For building the web application
|
5 |
from transformers import (
|
6 |
pipeline,
|
7 |
SpeechT5Processor,
|
@@ -17,74 +17,141 @@ import soundfile as sf # For saving audio as .wav files
|
|
17 |
##########################################
|
18 |
# Streamlit application title and input
|
19 |
##########################################
|
20 |
-
st.title("Comment Reply for You") #
|
21 |
-
st.write("Generate automatic replies for user comments") #
|
22 |
-
text = st.text_area("Enter your comment", "") # Text
|
23 |
|
24 |
##########################################
|
25 |
# Step 1: Sentiment Analysis Function
|
26 |
##########################################
|
27 |
def analyze_dominant_emotion(user_review):
|
28 |
"""
|
29 |
-
Analyze the dominant emotion in the user's
|
30 |
"""
|
31 |
emotion_classifier = pipeline(
|
32 |
"text-classification",
|
33 |
model="Thea231/jhartmann_emotion_finetuning",
|
34 |
return_all_scores=True
|
35 |
-
) # Load
|
36 |
|
37 |
-
emotion_results = emotion_classifier(user_review)[0] # Get emotion scores for the
|
38 |
-
dominant_emotion = max(emotion_results, key=lambda x: x['score']) #
|
39 |
-
return dominant_emotion
|
40 |
|
41 |
##########################################
|
42 |
# Step 2: Response Generation Function
|
43 |
##########################################
|
44 |
def response_gen(user_review):
|
45 |
"""
|
46 |
-
Generate a response based on the sentiment of the user's
|
47 |
"""
|
48 |
-
# Use Llama-based model to create a response based on a generated prompt
|
49 |
-
dominant_emotion = analyze_dominant_emotion(user_review) # Get the dominant emotion
|
50 |
-
emotion_label = dominant_emotion['label'].lower() # Extract emotion label
|
51 |
|
52 |
-
#
|
53 |
-
|
54 |
-
"anger": (
|
55 |
-
"Customer complaint: '{review}'\n\n"
|
56 |
-
"As a customer service representative, write a response that:\n"
|
57 |
-
"- Sincerely apologizes for the issue\n"
|
58 |
-
"- Explains how the issue will be resolved\n"
|
59 |
-
"- Offers compensation where appropriate\n\n"
|
60 |
-
"Response:"
|
61 |
-
),
|
62 |
-
"joy": (
|
63 |
-
"Customer review: '{review}'\n\n"
|
64 |
-
"As a customer service representative, write a positive response that:\n"
|
65 |
-
"- Thanks the customer for their feedback\n"
|
66 |
-
"- Acknowledges both positive and constructive comments\n"
|
67 |
-
"- Invites them to explore loyalty programs\n\n"
|
68 |
-
"Response:"
|
69 |
-
),
|
70 |
-
# Add other emotions as needed...
|
71 |
-
}
|
72 |
-
|
73 |
-
# Format the prompt with the user's review
|
74 |
-
prompt = emotion_prompts.get(emotion_label, "Neutral").format(review=user_review)
|
75 |
|
76 |
-
#
|
77 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
78 |
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
##########################################
|
90 |
# Step 3: Text-to-Speech Conversion Function
|
@@ -93,26 +160,28 @@ def sound_gen(response):
|
|
93 |
"""
|
94 |
Convert the generated response to speech and save as a .wav file.
|
95 |
"""
|
96 |
-
# Load the pre-trained TTS models
|
97 |
-
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
98 |
-
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")
|
99 |
-
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
100 |
-
|
101 |
-
# Load
|
102 |
-
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
103 |
-
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
104 |
-
|
105 |
-
# Process the input text and
|
106 |
inputs = processor(text=response, return_tensors="pt")
|
107 |
spectrogram = model.generate_speech(inputs["input_ids"], speaker_embeddings)
|
108 |
-
|
109 |
-
#
|
110 |
with torch.no_grad():
|
111 |
speech = vocoder(spectrogram)
|
112 |
|
113 |
-
# Save the
|
114 |
sf.write("customer_service_response.wav", speech.numpy(), samplerate=16000)
|
115 |
-
|
|
|
|
|
116 |
|
117 |
##########################################
|
118 |
# Main Function
|
@@ -121,11 +190,11 @@ def main():
|
|
121 |
"""
|
122 |
Main function to orchestrate the workflow of sentiment analysis, response generation, and text-to-speech.
|
123 |
"""
|
124 |
-
if text: # Check if the user entered a comment
|
125 |
-
response = response_gen(text) # Generate a response
|
126 |
-
st.write(f"
|
127 |
-
sound_gen(response) # Convert the response to speech and
|
128 |
|
129 |
-
# Run the main function
|
130 |
if __name__ == "__main__":
|
131 |
-
main()
|
|
|
1 |
##########################################
|
2 |
# Step 0: Import required libraries
|
3 |
##########################################
|
4 |
+
import streamlit as st # For building the web application interface
|
5 |
from transformers import (
|
6 |
pipeline,
|
7 |
SpeechT5Processor,
|
|
|
17 |
##########################################
|
18 |
# Streamlit application title and input
|
19 |
##########################################
|
20 |
+
st.title("Comment Reply for You") # Set the app title for user interface
|
21 |
+
st.write("Generate automatic replies for user comments") # Add a brief app description
|
22 |
+
text = st.text_area("Enter your comment", "") # Text area for user to input their comment or feedback
|
23 |
|
24 |
##########################################
|
25 |
# Step 1: Sentiment Analysis Function
|
26 |
##########################################
|
27 |
def analyze_dominant_emotion(user_review):
|
28 |
"""
|
29 |
+
Analyze the dominant emotion in the user's comment using our fine-tuned text classification model.
|
30 |
"""
|
31 |
emotion_classifier = pipeline(
|
32 |
"text-classification",
|
33 |
model="Thea231/jhartmann_emotion_finetuning",
|
34 |
return_all_scores=True
|
35 |
+
) # Load our fine-tuned text classification model
|
36 |
|
37 |
+
emotion_results = emotion_classifier(user_review)[0] # Get the emotion classification scores for the input text
|
38 |
+
dominant_emotion = max(emotion_results, key=lambda x: x['score']) # Identify the emotion with the highest confidence
|
39 |
+
return dominant_emotion # Return the dominant emotion (label and score)
|
40 |
|
41 |
##########################################
|
42 |
# Step 2: Response Generation Function
|
43 |
##########################################
|
44 |
def response_gen(user_review):
|
45 |
"""
|
46 |
+
Generate a concise and logical response based on the sentiment of the user's comment.
|
47 |
"""
|
|
|
|
|
|
|
48 |
|
49 |
+
dominant_emotion = analyze_dominant_emotion(user_review) # Get the dominant emotion of the user's comment
|
50 |
+
emotion_label = dominant_emotion['label'].lower() # Extract the emotion label in lowercase format
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
+
# Define response templates for each emotion
|
|
|
53 |
|
54 |
+
emotion_strategies = {
|
55 |
+
"anger": {
|
56 |
+
"prompt": (
|
57 |
+
"Customer complaint: '{review}'\n\n"
|
58 |
+
"As a customer service representative, craft a professional response that:\n"
|
59 |
+
"- Begins with sincere apology and acknowledgment\n"
|
60 |
+
"- Clearly explains solution process with concrete steps\n"
|
61 |
+
"- Offers appropriate compensation/redemption\n"
|
62 |
+
"- Keeps tone humble and solution-focused (3-4 sentences)\n\n"
|
63 |
+
"Response:"
|
64 |
+
)
|
65 |
+
},
|
66 |
+
"disgust": {
|
67 |
+
"prompt": (
|
68 |
+
"Customer quality concern: '{review}'\n\n"
|
69 |
+
"As a customer service representative, craft a response that:\n"
|
70 |
+
"- Immediately acknowledges the product issue\n"
|
71 |
+
"- Explains quality control measures being taken\n"
|
72 |
+
"- Provides clear return/replacement instructions\n"
|
73 |
+
"- Offers goodwill gesture (3-4 sentences)\n\n"
|
74 |
+
"Response:"
|
75 |
+
)
|
76 |
+
},
|
77 |
+
"fear": {
|
78 |
+
"prompt": (
|
79 |
+
"Customer safety concern: '{review}'\n\n"
|
80 |
+
"As a customer service representative, craft a reassuring response that:\n"
|
81 |
+
"- Directly addresses the safety worries\n"
|
82 |
+
"- References relevant certifications/standards\n"
|
83 |
+
"- Offers dedicated support contact\n"
|
84 |
+
"- Provides satisfaction guarantee (3-4 sentences)\n\n"
|
85 |
+
"Response:"
|
86 |
+
)
|
87 |
+
},
|
88 |
+
"joy": {
|
89 |
+
"prompt": (
|
90 |
+
"Customer review: '{review}'\n\n"
|
91 |
+
"As a customer service representative, craft a concise response that:\n"
|
92 |
+
"- Specifically acknowledges both positive and constructive feedback\n"
|
93 |
+
"- Briefly mentions loyalty/referral programs\n"
|
94 |
+
"- Ends with shopping invitation (3-4 sentences)\n\n"
|
95 |
+
"Response:"
|
96 |
+
)
|
97 |
+
},
|
98 |
+
"neutral": {
|
99 |
+
"prompt": (
|
100 |
+
"Customer feedback: '{review}'\n\n"
|
101 |
+
"As a customer service representative, craft a balanced response that:\n"
|
102 |
+
"- Provides additional relevant product information\n"
|
103 |
+
"- Highlights key service features\n"
|
104 |
+
"- Politely requests more detailed feedback\n"
|
105 |
+
"- Maintains professional tone (3-4 sentences)\n\n"
|
106 |
+
"Response:"
|
107 |
+
)
|
108 |
+
},
|
109 |
+
"sadness": {
|
110 |
+
"prompt": (
|
111 |
+
"Customer disappointment: '{review}'\n\n"
|
112 |
+
"As a customer service representative, craft an empathetic response that:\n"
|
113 |
+
"- Shows genuine understanding of the issue\n"
|
114 |
+
"- Proposes personalized recovery solution\n"
|
115 |
+
"- Offers extended support options\n"
|
116 |
+
"- Maintains positive outlook (3-4 sentences)\n\n"
|
117 |
+
"Response:"
|
118 |
+
)
|
119 |
+
},
|
120 |
+
"surprise": {
|
121 |
+
"prompt": (
|
122 |
+
"Customer enthusiastic feedback: '{review}'\n\n"
|
123 |
+
"As a customer service representative, craft a response that:\n"
|
124 |
+
"- Matches customer's positive energy appropriately\n"
|
125 |
+
"- Highlights unexpected product benefits\n"
|
126 |
+
"- Invites to user community/events\n"
|
127 |
+
"- Maintains brand voice (3-4 sentences)\n\n"
|
128 |
+
"Response:"
|
129 |
+
)
|
130 |
+
}
|
131 |
+
|
132 |
+
# Select the appropriate prompt based on the user's emotion, or default to neutral
|
133 |
+
prompt = emotion_prompts.get(
|
134 |
+
emotion_label,
|
135 |
+
f"Neutral feedback: '{user_review}'\n\nWrite a professional and concise response (50-200 words max).\n\nResponse:"
|
136 |
+
)
|
137 |
|
138 |
+
# Load the tokenizer and language model for text generation
|
139 |
+
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-0.5B") # Load tokenizer for processing text inputs
|
140 |
+
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen1.5-0.5B") # Load language model for response generation
|
141 |
+
|
142 |
+
inputs = tokenizer(prompt, return_tensors="pt") # Tokenize the input prompt
|
143 |
+
outputs = model.generate(
|
144 |
+
**inputs,
|
145 |
+
max_new_tokens=300, # Set the upper limit of tokens generated to ensure the response isn't too lengthy
|
146 |
+
min_length=75, # Set the minimum length of the generated response
|
147 |
+
no_repeat_ngram_size=2, # Avoid repeating phrases
|
148 |
+
temperature=0.7 # Add slight randomness for natural-sounding responses
|
149 |
+
)
|
150 |
+
|
151 |
+
# Decode the generated response back into text
|
152 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
153 |
+
print(f" {response}") # Debug print statement for generated text
|
154 |
+
return response # Return the generated response
|
155 |
|
156 |
##########################################
|
157 |
# Step 3: Text-to-Speech Conversion Function
|
|
|
160 |
"""
|
161 |
Convert the generated response to speech and save as a .wav file.
|
162 |
"""
|
163 |
+
# Load the pre-trained TTS models for speech synthesis
|
164 |
+
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") # Pre-trained processor for TTS
|
165 |
+
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts") # Pre-trained TTS model
|
166 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") # Vocoder for generating waveforms
|
167 |
+
|
168 |
+
# Load a neutral female voice embedding from a pre-trained dataset
|
169 |
+
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") # Load speaker embeddings
|
170 |
+
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) # Use a default speaker embedding
|
171 |
+
|
172 |
+
# Process the input text and create a speech spectrogram
|
173 |
inputs = processor(text=response, return_tensors="pt")
|
174 |
spectrogram = model.generate_speech(inputs["input_ids"], speaker_embeddings)
|
175 |
+
|
176 |
+
# Convert the spectrogram into an audio waveform using the vocoder
|
177 |
with torch.no_grad():
|
178 |
speech = vocoder(spectrogram)
|
179 |
|
180 |
+
# Save the audio as a .wav file
|
181 |
sf.write("customer_service_response.wav", speech.numpy(), samplerate=16000)
|
182 |
+
# Play the generated audio in the Streamlit app
|
183 |
+
st.audio("customer_service_response.wav") # Embed an audio player in the web app
|
184 |
+
|
185 |
|
186 |
##########################################
|
187 |
# Main Function
|
|
|
190 |
"""
|
191 |
Main function to orchestrate the workflow of sentiment analysis, response generation, and text-to-speech.
|
192 |
"""
|
193 |
+
if text: # Check if the user has entered a comment
|
194 |
+
response = response_gen(text) # Generate a logical and concise response
|
195 |
+
st.write(f"I wanna tell you that: {response}") # Display the generated response in the Streamlit app
|
196 |
+
sound_gen(response) # Convert the text response to speech and make it available for playback
|
197 |
|
198 |
+
# Run the main function when the script is executed
|
199 |
if __name__ == "__main__":
|
200 |
+
main()
|