File size: 11,611 Bytes
c93d183
3a249bb
 
 
 
3d2120b
 
3a249bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c93d183
829d082
c93d183
 
 
 
 
 
 
 
 
 
b3dcea1
 
 
c93d183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
829d082
56b85a5
829d082
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56b85a5
5a741e8
 
 
 
56b85a5
 
 
 
 
5a741e8
 
 
 
 
 
56b85a5
 
 
 
 
 
 
 
 
5a741e8
 
 
 
 
 
56b85a5
 
 
5a741e8
56b85a5
 
 
 
 
 
 
 
 
5a741e8
 
 
 
 
 
 
 
 
56b85a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a741e8
 
 
 
 
 
56b85a5
 
 
5a741e8
4071ce6
56b85a5
 
 
 
 
 
 
 
 
 
 
 
 
 
d09d853
56b85a5
4071ce6
5a741e8
56b85a5
27e835e
 
804adf6
27e835e
 
 
5a741e8
 
 
 
c48887f
804adf6
 
 
 
5a741e8
 
c48887f
5a741e8
27e835e
 
 
 
 
 
 
 
 
5a741e8
804adf6
 
 
 
5a741e8
27e835e
 
 
65d8742
27e835e
 
 
 
 
 
 
 
 
804adf6
 
 
 
 
 
 
 
5a741e8
 
27e835e
 
5a741e8
 
 
 
 
 
27e835e
 
 
5a741e8
27e835e
 
 
 
 
 
 
 
 
 
 
 
804adf6
27e835e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a741e8
 
 
 
27e835e
 
 
5a741e8
27e835e
 
 
75d548f
815e99c
804adf6
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
'''import gradio as gr
from transformers import TFBertForSequenceClassification, BertTokenizer
import tensorflow as tf

# Load model and tokenizer from your HF model repo
model = TFBertForSequenceClassification.from_pretrained("shrish191/sentiment-bert")
tokenizer = BertTokenizer.from_pretrained("shrish191/sentiment-bert")

def classify_sentiment(text):
    inputs = tokenizer(text, return_tensors="tf", padding=True, truncation=True)
    predictions = model(inputs).logits
    label = tf.argmax(predictions, axis=1).numpy()[0]
    labels = {0: "Negative", 1: "Neutral", 2: "Positive"}
    return labels[label]

demo = gr.Interface(fn=classify_sentiment,
                    inputs=gr.Textbox(placeholder="Enter a tweet..."),
                    outputs="text",
                    title="Tweet Sentiment Classifier",
                    description="Multilingual BERT-based Sentiment Analysis")

demo.launch()
'''
'''
import gradio as gr
from transformers import TFBertForSequenceClassification, BertTokenizer
import tensorflow as tf

# Load model and tokenizer from Hugging Face
model = TFBertForSequenceClassification.from_pretrained("shrish191/sentiment-bert")
tokenizer = BertTokenizer.from_pretrained("shrish191/sentiment-bert")

# Manually define the correct mapping
LABELS = {
    0: "Neutral",
    1: "Positive",
    2: "Negative"
}

def classify_sentiment(text):
    inputs = tokenizer(text, return_tensors="tf", truncation=True, padding=True)
    outputs = model(inputs)
    probs = tf.nn.softmax(outputs.logits, axis=1)
    pred_label = tf.argmax(probs, axis=1).numpy()[0]
    confidence = float(tf.reduce_max(probs).numpy())
    return f"Prediction: {LABELS[pred_label]} (Confidence: {confidence:.2f})"

demo = gr.Interface(
    fn=classify_sentiment,
    inputs=gr.Textbox(placeholder="Type your tweet here..."),
    outputs="text",
    title="Sentiment Analysis on Tweets",
    description="Multilingual BERT model fine-tuned for sentiment classification. Labels: Positive, Neutral, Negative."
)

demo.launch()
'''
'''
import gradio as gr
from transformers import TFBertForSequenceClassification, BertTokenizer
import tensorflow as tf
import snscrape.modules.twitter as sntwitter
import praw
import os

# Load model and tokenizer
model = TFBertForSequenceClassification.from_pretrained("shrish191/sentiment-bert")
tokenizer = BertTokenizer.from_pretrained("shrish191/sentiment-bert")

# Label Mapping
LABELS = {
    0: "Neutral",
    1: "Positive",
    2: "Negative"
}

# Reddit API setup with environment variables
reddit = praw.Reddit(
    client_id=os.getenv("REDDIT_CLIENT_ID"),
    client_secret=os.getenv("REDDIT_CLIENT_SECRET"),
    user_agent=os.getenv("REDDIT_USER_AGENT", "sentiment-classifier-script")
)

# Tweet text extractor
def fetch_tweet_text(tweet_url):
    try:
        tweet_id = tweet_url.split("/")[-1]
        for tweet in sntwitter.TwitterTweetScraper(tweet_id).get_items():
            return tweet.content
        return "Unable to extract tweet content."
    except Exception as e:
        return f"Error fetching tweet: {str(e)}"

# Reddit post extractor
def fetch_reddit_text(reddit_url):
    try:
        submission = reddit.submission(url=reddit_url)
        return f"{submission.title}\n\n{submission.selftext}"
    except Exception as e:
        return f"Error fetching Reddit post: {str(e)}"

# Sentiment classification logic
def classify_sentiment(text_input, tweet_url, reddit_url):
    if reddit_url.strip():
        text = fetch_reddit_text(reddit_url)
    elif tweet_url.strip():
        text = fetch_tweet_text(tweet_url)
    elif text_input.strip():
        text = text_input
    else:
        return "[!] Please enter text or a post URL."

    if text.lower().startswith("error") or "Unable to extract" in text:
        return f"[!] Error: {text}"

    try:
        inputs = tokenizer(text, return_tensors="tf", truncation=True, padding=True)
        outputs = model(inputs)
        probs = tf.nn.softmax(outputs.logits, axis=1)
        pred_label = tf.argmax(probs, axis=1).numpy()[0]
        confidence = float(tf.reduce_max(probs).numpy())
        return f"Prediction: {LABELS[pred_label]} (Confidence: {confidence:.2f})"
    except Exception as e:
        return f"[!] Prediction error: {str(e)}"

# Gradio Interface
demo = gr.Interface(
    fn=classify_sentiment,
    inputs=[
        gr.Textbox(label="Custom Text Input", placeholder="Type your tweet or message here..."),
        gr.Textbox(label="Tweet URL", placeholder="Paste a tweet URL here (optional)"),
        gr.Textbox(label="Reddit Post URL", placeholder="Paste a Reddit post URL here (optional)")
    ],
    outputs="text",
    title="Multilingual Sentiment Analysis",
    description="Analyze sentiment of text, tweets, or Reddit posts. Supports multiple languages using BERT!"
)

demo.launch()
'''

 
'''
import gradio as gr
from transformers import TFBertForSequenceClassification, BertTokenizer
import tensorflow as tf
import praw
import os


from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
from scipy.special import softmax


model = TFBertForSequenceClassification.from_pretrained("shrish191/sentiment-bert")
tokenizer = BertTokenizer.from_pretrained("shrish191/sentiment-bert")

LABELS = {
    0: "Neutral",
    1: "Positive",
    2: "Negative"
}


fallback_model_name = "cardiffnlp/twitter-roberta-base-sentiment"
fallback_tokenizer = AutoTokenizer.from_pretrained(fallback_model_name)
fallback_model = AutoModelForSequenceClassification.from_pretrained(fallback_model_name)

# Reddit API
reddit = praw.Reddit(
    client_id=os.getenv("REDDIT_CLIENT_ID"),
    client_secret=os.getenv("REDDIT_CLIENT_SECRET"),
    user_agent=os.getenv("REDDIT_USER_AGENT", "sentiment-classifier-ui")
)

def fetch_reddit_text(reddit_url):
    try:
        submission = reddit.submission(url=reddit_url)
        return f"{submission.title}\n\n{submission.selftext}"
    except Exception as e:
        return f"Error fetching Reddit post: {str(e)}"


def fallback_classifier(text):
    encoded_input = fallback_tokenizer(text, return_tensors='pt', truncation=True, padding=True)
    with torch.no_grad():
        output = fallback_model(**encoded_input)
    scores = softmax(output.logits.numpy()[0])
    labels = ['Negative', 'Neutral', 'Positive']
    return f"Prediction: {labels[scores.argmax()]}"

def classify_sentiment(text_input, reddit_url):
    if reddit_url.strip():
        text = fetch_reddit_text(reddit_url)
    elif text_input.strip():
        text = text_input
    else:
        return "[!] Please enter some text or a Reddit post URL."

    if text.lower().startswith("error") or "Unable to extract" in text:
        return f"[!] {text}"

    try:
        inputs = tokenizer(text, return_tensors="tf", truncation=True, padding=True)
        outputs = model(inputs)
        probs = tf.nn.softmax(outputs.logits, axis=1)
        confidence = float(tf.reduce_max(probs).numpy())
        pred_label = tf.argmax(probs, axis=1).numpy()[0]

        if confidence < 0.5:
            return fallback_classifier(text)

        return f"Prediction: {LABELS[pred_label]}"
    except Exception as e:
        return f"[!] Prediction error: {str(e)}"

# Gradio interface
demo = gr.Interface(
    fn=classify_sentiment,
    inputs=[
        gr.Textbox(
            label="Text Input (can be tweet or any content)",
            placeholder="Paste tweet or type any content here...",
            lines=4
        ),
        gr.Textbox(
            label="Reddit Post URL",
            placeholder="Paste a Reddit post URL (optional)",
            lines=1
        ),
    ],
    outputs="text",
    title="Sentiment Analyzer",
    description="πŸ” Paste any text (including tweet content) OR a Reddit post URL to analyze sentiment.\n\nπŸ’‘ Tweet URLs are not supported directly due to platform restrictions. Please paste tweet content manually."
)

demo.launch()
'''
import gradio as gr
from transformers import TFBertForSequenceClassification, BertTokenizer
import tensorflow as tf
import praw
import os
import pytesseract
from PIL import Image
import cv2
import numpy as np

from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
from scipy.special import softmax

# Install tesseract OCR (only runs once in Hugging Face Spaces)
os.system("apt-get update && apt-get install -y tesseract-ocr")

# Load main model
model = TFBertForSequenceClassification.from_pretrained("shrish191/sentiment-bert")
tokenizer = BertTokenizer.from_pretrained("shrish191/sentiment-bert")

LABELS = {
    0: "Neutral",
    1: "Positive",
    2: "Negative"
}

# Load fallback model
fallback_model_name = "cardiffnlp/twitter-roberta-base-sentiment"
fallback_tokenizer = AutoTokenizer.from_pretrained(fallback_model_name)
fallback_model = AutoModelForSequenceClassification.from_pretrained(fallback_model_name)

# Reddit API setup
reddit = praw.Reddit(
    client_id=os.getenv("REDDIT_CLIENT_ID"),
    client_secret=os.getenv("REDDIT_CLIENT_SECRET"),
    user_agent=os.getenv("REDDIT_USER_AGENT", "sentiment-classifier-ui")
)

def fetch_reddit_text(reddit_url):
    try:
        submission = reddit.submission(url=reddit_url)
        return f"{submission.title}\n\n{submission.selftext}"
    except Exception as e:
        return f"Error fetching Reddit post: {str(e)}"

def fallback_classifier(text):
    encoded_input = fallback_tokenizer(text, return_tensors='pt', truncation=True, padding=True)
    with torch.no_grad():
        output = fallback_model(**encoded_input)
    scores = softmax(output.logits.numpy()[0])
    labels = ['Negative', 'Neutral', 'Positive']
    return f"Prediction: {labels[scores.argmax()]}"

def classify_sentiment(text_input, reddit_url, image):
    # Priority: Reddit > Image > Textbox
    if reddit_url.strip():
        text = fetch_reddit_text(reddit_url)
    elif image is not None:
        try:
            img_array = np.array(image)
            text = pytesseract.image_to_string(img_array)
        except Exception as e:
            return f"[!] OCR failed: {str(e)}"
    elif text_input.strip():
        text = text_input
    else:
        return "[!] Please enter some text, upload an image, or provide a Reddit URL."

    if text.lower().startswith("error") or "Unable to extract" in text:
        return f"[!] {text}"

    try:
        inputs = tokenizer(text, return_tensors="tf", truncation=True, padding=True)
        outputs = model(inputs)
        probs = tf.nn.softmax(outputs.logits, axis=1)
        confidence = float(tf.reduce_max(probs).numpy())
        pred_label = tf.argmax(probs, axis=1).numpy()[0]

        if confidence < 0.5:
            return fallback_classifier(text)

        return f"Prediction: {LABELS[pred_label]}"
    except Exception as e:
        return f"[!] Prediction error: {str(e)}"

# Gradio interface
demo = gr.Interface(
    fn=classify_sentiment,
    inputs=[
        gr.Textbox(
            label="Text Input (can be tweet or any content)",
            placeholder="Paste tweet or type any content here...",
            lines=4
        ),
        gr.Textbox(
            label="Reddit Post URL",
            placeholder="Paste a Reddit post URL (optional)",
            lines=1
        ),
        gr.Image(
            label="Upload Image (optional)",
            type="pil"
        )
    ],
    outputs="text",
    title="Sentiment Analyzer",
    description="πŸ” Paste any text, Reddit post URL, or upload an image containing text to analyze sentiment.\n\nπŸ’‘ Tweet URLs are not supported. Please paste tweet content or screenshot instead."
)

demo.launch()