File size: 14,251 Bytes
93196f3 f63fff0 41f86f5 98b5ad2 942923c 8ac74fd 508da0c 11999c7 8ac74fd bea3bac 6f3de94 bea3bac 11999c7 bea3bac ed9b5c4 bea3bac 98b5ad2 b3348ab 991eed9 c5595b8 bea3bac 8ac74fd bea3bac 8ac74fd 8ab13a8 bea3bac 8ab13a8 c5595b8 daa5b98 8ac74fd bea3bac ed9b5c4 bea3bac daa5b98 bea3bac 8ac74fd bea3bac 6f3de94 ed9b5c4 17414a3 bea3bac daa5b98 bea3bac 8ac74fd bea3bac daa5b98 bea3bac 8ac74fd bea3bac 8ac74fd bea3bac 8ac74fd bea3bac 8ac74fd bea3bac 8ac74fd bea3bac 8ac74fd bea3bac 8ac74fd bea3bac daa5b98 bea3bac daa5b98 8ac74fd 20fb87c 8ac74fd 20fb87c f2e9086 8ac74fd 20fb87c 8ac74fd 20fb87c 15ddc73 20fb87c 510e15b 20fb87c 8ac74fd ad01300 8ac74fd 8ab13a8 8ac74fd 510e15b 8ab13a8 8ac74fd 2e37859 8ac74fd 2e37859 8ac74fd 2e37859 8ac74fd 2e37859 6f415f1 8ac74fd 2e37859 98b5ad2 2e37859 98b5ad2 2e37859 98b5ad2 8ac74fd 2e37859 8ac74fd 2e37859 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
import streamlit as st
from data_utils import *
import xarray as xr
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import pickle
import glob, os
import re
import tensorflow as tf
import netCDF4
import copy
import string
import h5py
from tqdm import tqdm
st.title('A _Quickstart Notebook_ for :blue[ClimSim]:')
st.link_button("Go to ClimSim Github Repository", "https://github.com/leap-stc/ClimSim/tree/main",use_container_width=True)
st.header('**Step 1:** Import data_utils')
st.code('''from data_utils import *''',language='python')
st.header('**Step 2:** Instantiate class')
st.link_button("Go to original grid_info", "https://github.com/leap-stc/ClimSim/tree/main/grid_info",use_container_width=True)
st.link_button("Go to original input_mean input_max input_min output_scale", "https://github.com/leap-stc/ClimSim/tree/main/preprocessing/normalizations",use_container_width=True)
st.code('''#Change the path to your own
grid_info = xr.open_dataset('ClimSim_low-res_grid-info.nc')
input_mean = xr.open_dataset('input_mean.nc')
input_max = xr.open_dataset('input_max.nc')
input_min = xr.open_dataset('input_min.nc')
output_scale = xr.open_dataset('output_scale.nc')
data = data_utils(grid_info = grid_info,
input_mean = input_mean,
input_max = input_max,
input_min = input_min,
output_scale = output_scale)
# set variables to V1 subset
data.set_to_v1_vars()''',language='python')
grid_info = xr.open_dataset('ClimSim_low-res_grid-info.nc')
input_mean = xr.open_dataset('input_mean.nc')
input_max = xr.open_dataset('input_max.nc')
input_min = xr.open_dataset('input_min.nc')
output_scale = xr.open_dataset('output_scale.nc')
data = data_utils(grid_info = grid_info,
input_mean = input_mean,
input_max = input_max,
input_min = input_min,
output_scale = output_scale)
data.set_to_v1_vars()
st.header('**Step 3:** Load training and validation data')
st.link_button("Go to Original Dataset", "https://huggingface.co/datasets/LEAP/subsampled_low_res/tree/main",use_container_width=True)
st.code('''data.input_train = data.load_npy_file('train_input_small.npy')
data.target_train = data.load_npy_file('train_target_small.npy')
data.input_val = data.load_npy_file('val_input_small.npy')
data.target_val = data.load_npy_file('val_target_small.npy')''',language='python')
data.input_train = data.load_npy_file('train_input_small.npy')
data.target_train = data.load_npy_file('train_target_small.npy')
data.input_val = data.load_npy_file('val_input_small.npy')
data.target_val = data.load_npy_file('val_target_small.npy')
st.header('**Step 4:** Train models')
st.subheader('Train constant prediction model')
st.latex(r'''\hat{y}=E[y_{train}]''')
st.code('''const_model = data.target_train.mean(axis = 0)''',language='python')
const_model = data.target_train.mean(axis = 0)
st.subheader('Train multiple linear regression model')
st.latex(r'''\beta=(X^{T}_{train} X_{train})^{-1} X^{T}_{train} y_{train} \\
\hat{y}=X^{T}_{input} \beta \\
\text{where } X_{train} \text{ and } X_{input} \text{ correspond to the training data and the input data you would like to inference on, respectively.} \\
X_{train} \text{ and } X_{input} \text{ both have a column of ones concatenated to the feature space for the bias.}''')
st.text('adding bias unit')
st.code('''X = data.input_train
bias_vector = np.ones((X.shape[0], 1))
X = np.concatenate((X, bias_vector), axis=1)''',language='python')
X = data.input_train
bias_vector = np.ones((X.shape[0], 1))
X = np.concatenate((X, bias_vector), axis=1)
st.text('create model')
st.code('''mlr_weights = np.linalg.inv(X.transpose()@X)@X.transpose()@data.target_train''',language='python')
mlr_weights = np.linalg.inv(X.transpose()@X)@X.transpose()@data.target_train
st.subheader('Train your models here')
st.code('''###
# train your model here
###''',language='python')
st.header('**Step 5:** Evaluate on validation data')
st.subheader('Set pressure grid')
st.code('''data.set_pressure_grid(data_split = 'val')''',language='python')
data.set_pressure_grid(data_split = 'val')
st.subheader('Load predictions')
st.code('''# Constant Prediction
const_pred_val = np.repeat(const_model[np.newaxis, :], data.target_val.shape[0], axis = 0)
print(const_pred_val.shape)
# Multiple Linear Regression
X_val = data.input_val
bias_vector_val = np.ones((X_val.shape[0], 1))
X_val = np.concatenate((X_val, bias_vector_val), axis=1)
mlr_pred_val = X_val@mlr_weights
print(mlr_pred_val.shape)
# Load your prediction here
# Load predictions into data_utils object
data.model_names = ['const', 'mlr'] # add names of your models here
preds = [const_pred_val, mlr_pred_val] # add your custom predictions here
data.preds_val = dict(zip(data.model_names, preds))''',language='python')
const_pred_val = np.repeat(const_model[np.newaxis, :], data.target_val.shape[0], axis = 0)
print(const_pred_val.shape)
X_val = data.input_val
bias_vector_val = np.ones((X_val.shape[0], 1))
X_val = np.concatenate((X_val, bias_vector_val), axis=1)
mlr_pred_val = X_val@mlr_weights
print(mlr_pred_val.shape)
data.model_names = ['const', 'mlr'] # add names of your models here
preds = [const_pred_val, mlr_pred_val] # add your custom predictions here
data.preds_val = dict(zip(data.model_names, preds))
st.subheader('Weight predictions and target')
st.text('''1.Undo output scaling
2.Weight vertical levels by dp/g
3.Weight horizontal area of each grid cell by a[x]/mean(a[x])
4.Convert units to a common energy unit''')
st.code('''data.reweight_target(data_split = 'val')
data.reweight_preds(data_split = 'val')''',language='python')
data.reweight_target(data_split = 'val')
data.reweight_preds(data_split = 'val')
st.subheader('Set and calculate metrics')
st.code('''data.metrics_names = ['MAE', 'RMSE', 'R2', 'bias']
data.create_metrics_df(data_split = 'val')''',language='python')
data.metrics_names = ['MAE', 'RMSE', 'R2', 'bias']
data.create_metrics_df(data_split = 'val')
st.subheader('Create plots')
st.code('''# set plotting settings
%config InlineBackend.figure_format = 'retina'
letters = string.ascii_lowercase
# create custom dictionary for plotting
dict_var = data.metrics_var_val
plot_df_byvar = {}
for metric in data.metrics_names:
plot_df_byvar[metric] = pd.DataFrame([dict_var[model][metric] for model in data.model_names],
index=data.model_names)
plot_df_byvar[metric] = plot_df_byvar[metric].rename(columns = data.var_short_names).transpose()
# plot figure
fig, axes = plt.subplots(nrows = len(data.metrics_names), sharex = True)
for i in range(len(data.metrics_names)):
plot_df_byvar[data.metrics_names[i]].plot.bar(
legend = False,
ax = axes[i])
if data.metrics_names[i] != 'R2':
axes[i].set_ylabel('$W/m^2$')
else:
axes[i].set_ylim(0,1)
axes[i].set_title(f'({letters[i]}) {data.metrics_names[i]}')
axes[i].set_xlabel('Output variable')
axes[i].set_xticklabels(plot_df_byvar[data.metrics_names[i]].index, \
rotation=0, ha='center')
axes[0].legend(columnspacing = .9,
labelspacing = .3,
handleheight = .07,
handlelength = 1.5,
handletextpad = .2,
borderpad = .2,
ncol = 3,
loc = 'upper right')
fig.set_size_inches(7,8)
fig.tight_layout()''',language='python')
letters = string.ascii_lowercase
dict_var = data.metrics_var_val
plot_df_byvar = {}
for metric in data.metrics_names:
plot_df_byvar[metric] = pd.DataFrame([dict_var[model][metric] for model in data.model_names],
index=data.model_names)
plot_df_byvar[metric] = plot_df_byvar[metric].rename(columns = data.var_short_names).transpose()
fig, axes = plt.subplots(nrows = len(data.metrics_names), sharex = True)
for i in range(len(data.metrics_names)):
plot_df_byvar[data.metrics_names[i]].plot.bar(
legend = False,
ax = axes[i])
if data.metrics_names[i] != 'R2':
axes[i].set_ylabel('$W/m^2$')
else:
axes[i].set_ylim(0,1)
axes[i].set_title(f'({letters[i]}) {data.metrics_names[i]}')
axes[i].set_xlabel('Output variable')
axes[i].set_xticklabels(plot_df_byvar[data.metrics_names[i]].index, \
rotation=0, ha='center')
axes[0].legend(columnspacing = .9,
labelspacing = .3,
handleheight = .07,
handlelength = 1.5,
handletextpad = .2,
borderpad = .2,
ncol = 3,
loc = 'upper right')
fig.set_size_inches(7,8)
fig.tight_layout()
st.pyplot(fig)
st.text('If you trained models with different hyperparameters, use the ones that performed the best on validation data for evaluation on scoring data.')
st.header('**Step 6:** Evaluate on scoring data')
st.subheader('Do this at the VERY END (when you have finished tuned the hyperparameters for your model and are seeking a final evaluation)')
st.subheader('Load scoring data')
st.code('''data.input_scoring = np.load('scoring_input_small.npy')
data.target_scoring = np.load('scoring_target_small.npy')
''',language='python')
data.input_scoring = np.load('scoring_input_small.npy')
data.target_scoring = np.load('scoring_target_small.npy')
st.subheader('Set pressure grid')
st.code('''data.set_pressure_grid(data_split = 'scoring')''',language='python')
data.set_pressure_grid(data_split = 'scoring')
st.subheader('Load predictions')
st.code('''# constant prediction
const_pred_scoring = np.repeat(const_model[np.newaxis, :], data.target_scoring.shape[0], axis = 0)
print(const_pred_scoring.shape)
# multiple linear regression
X_scoring = data.input_scoring
bias_vector_scoring = np.ones((X_scoring.shape[0], 1))
X_scoring = np.concatenate((X_scoring, bias_vector_scoring), axis=1)
mlr_pred_scoring = X_scoring@mlr_weights
print(mlr_pred_scoring.shape)
# Your model prediction here
# Load predictions into object
data.model_names = ['const', 'mlr'] # model name here
preds = [const_pred_scoring, mlr_pred_scoring] # add prediction here
data.preds_scoring = dict(zip(data.model_names, preds))''',language='python')
const_pred_scoring = np.repeat(const_model[np.newaxis, :], data.target_scoring.shape[0], axis = 0)
print(const_pred_scoring.shape)
X_scoring = data.input_scoring
bias_vector_scoring = np.ones((X_scoring.shape[0], 1))
X_scoring = np.concatenate((X_scoring, bias_vector_scoring), axis=1)
mlr_pred_scoring = X_scoring@mlr_weights
print(mlr_pred_scoring.shape)
data.model_names = ['const', 'mlr'] # model name here
preds = [const_pred_scoring, mlr_pred_scoring] # add prediction here
data.preds_scoring = dict(zip(data.model_names, preds))
st.subheader('Weight predictions and target')
st.text('''1.Undo output scaling
2.Weight vertical levels by dp/g
3.Weight horizontal area of each grid cell by a[x]/mean(a[x])
4.Convert units to a common energy unit''')
st.code('''# weight predictions and target
data.reweight_target(data_split = 'scoring')
data.reweight_preds(data_split = 'scoring')
# set and calculate metrics
data.metrics_names = ['MAE', 'RMSE', 'R2', 'bias']
data.create_metrics_df(data_split = 'scoring')''',language='python')
# weight predictions and target
data.reweight_target(data_split = 'scoring')
data.reweight_preds(data_split = 'scoring')
# set and calculate metrics
data.metrics_names = ['MAE', 'RMSE', 'R2', 'bias']
data.create_metrics_df(data_split = 'scoring')
st.subheader('Create plots')
st.code('''# set plotting settings
%config InlineBackend.figure_format = 'retina'
letters = string.ascii_lowercase
# create custom dictionary for plotting
dict_var = data.metrics_var_scoring
plot_df_byvar = {}
for metric in data.metrics_names:
plot_df_byvar[metric] = pd.DataFrame([dict_var[model][metric] for model in data.model_names],
index=data.model_names)
plot_df_byvar[metric] = plot_df_byvar[metric].rename(columns = data.var_short_names).transpose()
# plot figure
fig, axes = plt.subplots(nrows = len(data.metrics_names), sharex = True)
for i in range(len(data.metrics_names)):
plot_df_byvar[data.metrics_names[i]].plot.bar(
legend = False,
ax = axes[i])
if data.metrics_names[i] != 'R2':
axes[i].set_ylabel('$W/m^2$')
else:
axes[i].set_ylim(0,1)
axes[i].set_title(f'({letters[i]}) {data.metrics_names[i]}')
axes[i].set_xlabel('Output variable')
axes[i].set_xticklabels(plot_df_byvar[data.metrics_names[i]].index, \
rotation=0, ha='center')
axes[0].legend(columnspacing = .9,
labelspacing = .3,
handleheight = .07,
handlelength = 1.5,
handletextpad = .2,
borderpad = .2,
ncol = 3,
loc = 'upper right')
fig.set_size_inches(7,8)
fig.tight_layout()''')
letters = string.ascii_lowercase
dict_var = data.metrics_var_scoring
plot_df_byvar = {}
for metric in data.metrics_names:
plot_df_byvar[metric] = pd.DataFrame([dict_var[model][metric] for model in data.model_names],
index=data.model_names)
plot_df_byvar[metric] = plot_df_byvar[metric].rename(columns = data.var_short_names).transpose()
fig, axes = plt.subplots(nrows = len(data.metrics_names), sharex = True)
for i in range(len(data.metrics_names)):
plot_df_byvar[data.metrics_names[i]].plot.bar(
legend = False,
ax = axes[i])
if data.metrics_names[i] != 'R2':
axes[i].set_ylabel('$W/m^2$')
else:
axes[i].set_ylim(0,1)
axes[i].set_title(f'({letters[i]}) {data.metrics_names[i]}')
axes[i].set_xlabel('Output variable')
axes[i].set_xticklabels(plot_df_byvar[data.metrics_names[i]].index, \
rotation=0, ha='center')
axes[0].legend(columnspacing = .9,
labelspacing = .3,
handleheight = .07,
handlelength = 1.5,
handletextpad = .2,
borderpad = .2,
ncol = 3,
loc = 'upper right')
fig.set_size_inches(7,8)
fig.tight_layout()
st.pyplot(fig)
|