File size: 14,251 Bytes
93196f3
f63fff0
 
 
 
 
 
 
 
 
 
 
 
 
 
41f86f5
98b5ad2
942923c
8ac74fd
508da0c
 
11999c7
8ac74fd
 
bea3bac
6f3de94
 
bea3bac
 
 
 
 
 
11999c7
bea3bac
 
 
 
 
ed9b5c4
 
bea3bac
98b5ad2
b3348ab
991eed9
 
 
 
c5595b8
 
 
 
 
 
 
 
 
bea3bac
8ac74fd
bea3bac
8ac74fd
8ab13a8
 
 
 
bea3bac
8ab13a8
 
 
 
c5595b8
daa5b98
8ac74fd
bea3bac
 
ed9b5c4
bea3bac
 
daa5b98
bea3bac
 
8ac74fd
bea3bac
6f3de94
ed9b5c4
17414a3
 
bea3bac
 
 
 
 
daa5b98
 
 
bea3bac
 
8ac74fd
bea3bac
 
 
daa5b98
bea3bac
 
8ac74fd
bea3bac
 
 
 
 
 
 
8ac74fd
 
bea3bac
8ac74fd
bea3bac
 
 
8ac74fd
 
 
 
bea3bac
8ac74fd
 
 
 
 
 
bea3bac
8ac74fd
bea3bac
8ac74fd
 
 
 
bea3bac
 
daa5b98
 
 
 
 
 
bea3bac
daa5b98
 
 
 
 
 
 
8ac74fd
 
 
 
 
 
 
 
 
 
20fb87c
 
8ac74fd
 
 
 
 
 
 
20fb87c
 
f2e9086
8ac74fd
 
 
 
 
20fb87c
 
 
 
 
 
 
 
 
 
 
8ac74fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20fb87c
 
15ddc73
20fb87c
 
 
 
 
 
 
510e15b
20fb87c
 
 
 
 
 
 
 
 
 
 
 
 
 
8ac74fd
ad01300
8ac74fd
 
 
 
 
 
8ab13a8
 
8ac74fd
510e15b
8ab13a8
 
8ac74fd
 
 
 
 
 
2e37859
8ac74fd
 
 
 
 
2e37859
 
 
 
 
 
 
 
 
 
 
 
 
8ac74fd
 
 
 
 
 
 
 
 
 
 
 
 
2e37859
 
 
8ac74fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e37859
 
 
 
 
 
 
 
6f415f1
8ac74fd
 
 
 
 
2e37859
 
 
 
 
 
 
 
 
98b5ad2
2e37859
 
 
 
 
 
 
 
 
 
98b5ad2
2e37859
 
 
 
98b5ad2
8ac74fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e37859
 
 
 
 
 
 
 
 
 
8ac74fd
2e37859
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
import streamlit as st
from data_utils import *
import xarray as xr
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import pickle
import glob, os
import re
import tensorflow as tf
import netCDF4
import copy
import string
import h5py
from tqdm import tqdm


st.title('A _Quickstart Notebook_ for :blue[ClimSim]:')
st.link_button("Go to ClimSim Github Repository", "https://github.com/leap-stc/ClimSim/tree/main",use_container_width=True)
st.header('**Step 1:**  Import data_utils')
st.code('''from data_utils import *''',language='python')



st.header('**Step 2:**  Instantiate class')
st.link_button("Go to original grid_info", "https://github.com/leap-stc/ClimSim/tree/main/grid_info",use_container_width=True)
st.link_button("Go to original input_mean input_max input_min output_scale", "https://github.com/leap-stc/ClimSim/tree/main/preprocessing/normalizations",use_container_width=True)
st.code('''#Change the path to your own
grid_info = xr.open_dataset('ClimSim_low-res_grid-info.nc')
input_mean = xr.open_dataset('input_mean.nc')
input_max = xr.open_dataset('input_max.nc')
input_min = xr.open_dataset('input_min.nc')
output_scale = xr.open_dataset('output_scale.nc')

data = data_utils(grid_info = grid_info,
                  input_mean = input_mean,
                  input_max = input_max,
                  input_min = input_min,
                  output_scale = output_scale)
                  
# set variables to V1 subset
data.set_to_v1_vars()''',language='python')

grid_info = xr.open_dataset('ClimSim_low-res_grid-info.nc')
input_mean = xr.open_dataset('input_mean.nc')
input_max = xr.open_dataset('input_max.nc')
input_min = xr.open_dataset('input_min.nc')
output_scale = xr.open_dataset('output_scale.nc')

data = data_utils(grid_info = grid_info,
                  input_mean = input_mean,
                  input_max = input_max,
                  input_min = input_min,
                  output_scale = output_scale)

data.set_to_v1_vars()



st.header('**Step 3:**  Load training and validation data')
st.link_button("Go to Original Dataset", "https://huggingface.co/datasets/LEAP/subsampled_low_res/tree/main",use_container_width=True)
st.code('''data.input_train = data.load_npy_file('train_input_small.npy')
data.target_train = data.load_npy_file('train_target_small.npy')
data.input_val = data.load_npy_file('val_input_small.npy')
data.target_val = data.load_npy_file('val_target_small.npy')''',language='python')

data.input_train = data.load_npy_file('train_input_small.npy')
data.target_train = data.load_npy_file('train_target_small.npy')
data.input_val = data.load_npy_file('val_input_small.npy')
data.target_val = data.load_npy_file('val_target_small.npy')



st.header('**Step 4:**  Train models')
st.subheader('Train constant prediction model')
st.latex(r'''\hat{y}=E[y_{train}]''')
st.code('''const_model = data.target_train.mean(axis = 0)''',language='python')

const_model = data.target_train.mean(axis = 0)



st.subheader('Train multiple linear regression model')
st.latex(r'''\beta=(X^{T}_{train} X_{train})^{-1} X^{T}_{train} y_{train} \\
\hat{y}=X^{T}_{input} \beta \\
\text{where } X_{train} \text{ and } X_{input} \text{ correspond to the training data and the input data you would like to inference on, respectively.} \\ 
X_{train} \text{ and } X_{input} \text{ both have a column of ones concatenated to the feature space for the bias.}''')
st.text('adding bias unit')
st.code('''X = data.input_train
bias_vector = np.ones((X.shape[0], 1))
X = np.concatenate((X, bias_vector), axis=1)''',language='python')

X = data.input_train
bias_vector = np.ones((X.shape[0], 1))
X = np.concatenate((X, bias_vector), axis=1)



st.text('create model')
st.code('''mlr_weights = np.linalg.inv(X.transpose()@X)@X.transpose()@data.target_train''',language='python')

mlr_weights = np.linalg.inv(X.transpose()@X)@X.transpose()@data.target_train



st.subheader('Train your models here')
st.code('''### 
# train your model here
###''',language='python')


st.header('**Step 5:**  Evaluate on validation data')
st.subheader('Set pressure grid')
st.code('''data.set_pressure_grid(data_split = 'val')''',language='python')

data.set_pressure_grid(data_split = 'val')



st.subheader('Load predictions')
st.code('''# Constant Prediction
const_pred_val = np.repeat(const_model[np.newaxis, :], data.target_val.shape[0], axis = 0)
print(const_pred_val.shape)

# Multiple Linear Regression
X_val = data.input_val
bias_vector_val = np.ones((X_val.shape[0], 1))
X_val = np.concatenate((X_val, bias_vector_val), axis=1)
mlr_pred_val = X_val@mlr_weights
print(mlr_pred_val.shape)

# Load your prediction here

# Load predictions into data_utils object
data.model_names = ['const', 'mlr'] # add names of your models here
preds = [const_pred_val, mlr_pred_val] # add your custom predictions here
data.preds_val = dict(zip(data.model_names, preds))''',language='python')


const_pred_val = np.repeat(const_model[np.newaxis, :], data.target_val.shape[0], axis = 0)
print(const_pred_val.shape)

X_val = data.input_val
bias_vector_val = np.ones((X_val.shape[0], 1))
X_val = np.concatenate((X_val, bias_vector_val), axis=1)

mlr_pred_val = X_val@mlr_weights
print(mlr_pred_val.shape)

data.model_names = ['const', 'mlr'] # add names of your models here
preds = [const_pred_val, mlr_pred_val] # add your custom predictions here
data.preds_val = dict(zip(data.model_names, preds))



st.subheader('Weight predictions and target')
st.text('''1.Undo output scaling
2.Weight vertical levels by dp/g
3.Weight horizontal area of each grid cell by a[x]/mean(a[x])
4.Convert units to a common energy unit''')
st.code('''data.reweight_target(data_split = 'val')
data.reweight_preds(data_split = 'val')''',language='python')

data.reweight_target(data_split = 'val')
data.reweight_preds(data_split = 'val')



st.subheader('Set and calculate metrics')
st.code('''data.metrics_names = ['MAE', 'RMSE', 'R2', 'bias']
data.create_metrics_df(data_split = 'val')''',language='python')

data.metrics_names = ['MAE', 'RMSE', 'R2', 'bias']
data.create_metrics_df(data_split = 'val')



st.subheader('Create plots')
st.code('''# set plotting settings
%config InlineBackend.figure_format = 'retina'
letters = string.ascii_lowercase

# create custom dictionary for plotting
dict_var = data.metrics_var_val
plot_df_byvar = {}
for metric in data.metrics_names:
    plot_df_byvar[metric] = pd.DataFrame([dict_var[model][metric] for model in data.model_names],
                                               index=data.model_names)
    plot_df_byvar[metric] = plot_df_byvar[metric].rename(columns = data.var_short_names).transpose()

# plot figure
fig, axes = plt.subplots(nrows  = len(data.metrics_names), sharex = True)
for i in range(len(data.metrics_names)):
    plot_df_byvar[data.metrics_names[i]].plot.bar(
        legend = False,
        ax = axes[i])
    if data.metrics_names[i] != 'R2':
        axes[i].set_ylabel('$W/m^2$')
    else:
        axes[i].set_ylim(0,1)

    axes[i].set_title(f'({letters[i]}) {data.metrics_names[i]}')
axes[i].set_xlabel('Output variable')
axes[i].set_xticklabels(plot_df_byvar[data.metrics_names[i]].index, \
    rotation=0, ha='center')

axes[0].legend(columnspacing = .9, 
               labelspacing = .3,
               handleheight = .07,
               handlelength = 1.5,
               handletextpad = .2,
               borderpad = .2,
               ncol = 3,
               loc = 'upper right')
fig.set_size_inches(7,8)
fig.tight_layout()''',language='python')

letters = string.ascii_lowercase

dict_var = data.metrics_var_val
plot_df_byvar = {}
for metric in data.metrics_names:
    plot_df_byvar[metric] = pd.DataFrame([dict_var[model][metric] for model in data.model_names],
                                               index=data.model_names)
    plot_df_byvar[metric] = plot_df_byvar[metric].rename(columns = data.var_short_names).transpose()

fig, axes = plt.subplots(nrows  = len(data.metrics_names), sharex = True)
for i in range(len(data.metrics_names)):
    plot_df_byvar[data.metrics_names[i]].plot.bar(
        legend = False,
        ax = axes[i])
    if data.metrics_names[i] != 'R2':
        axes[i].set_ylabel('$W/m^2$')
    else:
        axes[i].set_ylim(0,1)
    axes[i].set_title(f'({letters[i]}) {data.metrics_names[i]}')

axes[i].set_xlabel('Output variable')
axes[i].set_xticklabels(plot_df_byvar[data.metrics_names[i]].index, \
    rotation=0, ha='center')

axes[0].legend(columnspacing = .9,
               labelspacing = .3,
               handleheight = .07,
               handlelength = 1.5,
               handletextpad = .2,
               borderpad = .2,
               ncol = 3,
               loc = 'upper right')
fig.set_size_inches(7,8)
fig.tight_layout()

st.pyplot(fig)
st.text('If you trained models with different hyperparameters, use the ones that performed the best on validation data for evaluation on scoring data.')


st.header('**Step 6:**  Evaluate on scoring data')
st.subheader('Do this at the VERY END (when you have finished tuned the hyperparameters for your model and are seeking a final evaluation)')
st.subheader('Load scoring data')
st.code('''data.input_scoring = np.load('scoring_input_small.npy')
data.target_scoring = np.load('scoring_target_small.npy')
''',language='python')

data.input_scoring = np.load('scoring_input_small.npy')
data.target_scoring = np.load('scoring_target_small.npy')



st.subheader('Set pressure grid')
st.code('''data.set_pressure_grid(data_split = 'scoring')''',language='python')

data.set_pressure_grid(data_split = 'scoring')



st.subheader('Load predictions')
st.code('''# constant prediction
const_pred_scoring = np.repeat(const_model[np.newaxis, :], data.target_scoring.shape[0], axis = 0)
print(const_pred_scoring.shape)

# multiple linear regression
X_scoring = data.input_scoring
bias_vector_scoring = np.ones((X_scoring.shape[0], 1))
X_scoring = np.concatenate((X_scoring, bias_vector_scoring), axis=1)
mlr_pred_scoring = X_scoring@mlr_weights
print(mlr_pred_scoring.shape)

# Your model prediction here

# Load predictions into object
data.model_names = ['const', 'mlr'] # model name here
preds = [const_pred_scoring, mlr_pred_scoring] # add prediction here
data.preds_scoring = dict(zip(data.model_names, preds))''',language='python')

const_pred_scoring = np.repeat(const_model[np.newaxis, :], data.target_scoring.shape[0], axis = 0)
print(const_pred_scoring.shape)

X_scoring = data.input_scoring
bias_vector_scoring = np.ones((X_scoring.shape[0], 1))
X_scoring = np.concatenate((X_scoring, bias_vector_scoring), axis=1)
mlr_pred_scoring = X_scoring@mlr_weights
print(mlr_pred_scoring.shape)

data.model_names = ['const', 'mlr'] # model name here
preds = [const_pred_scoring, mlr_pred_scoring] # add prediction here
data.preds_scoring = dict(zip(data.model_names, preds))


st.subheader('Weight predictions and target')
st.text('''1.Undo output scaling
2.Weight vertical levels by dp/g
3.Weight horizontal area of each grid cell by a[x]/mean(a[x])
4.Convert units to a common energy unit''')
st.code('''# weight predictions and target
data.reweight_target(data_split = 'scoring')
data.reweight_preds(data_split = 'scoring')

# set and calculate metrics
data.metrics_names = ['MAE', 'RMSE', 'R2', 'bias']
data.create_metrics_df(data_split = 'scoring')''',language='python')

# weight predictions and target
data.reweight_target(data_split = 'scoring')
data.reweight_preds(data_split = 'scoring')

# set and calculate metrics
data.metrics_names = ['MAE', 'RMSE', 'R2', 'bias']
data.create_metrics_df(data_split = 'scoring')




st.subheader('Create plots')
st.code('''# set plotting settings
%config InlineBackend.figure_format = 'retina'
letters = string.ascii_lowercase

# create custom dictionary for plotting
dict_var = data.metrics_var_scoring
plot_df_byvar = {}
for metric in data.metrics_names:
    plot_df_byvar[metric] = pd.DataFrame([dict_var[model][metric] for model in data.model_names],
                                               index=data.model_names)
    plot_df_byvar[metric] = plot_df_byvar[metric].rename(columns = data.var_short_names).transpose()

# plot figure
fig, axes = plt.subplots(nrows  = len(data.metrics_names), sharex = True)
for i in range(len(data.metrics_names)):
    plot_df_byvar[data.metrics_names[i]].plot.bar(
        legend = False,
        ax = axes[i])
    if data.metrics_names[i] != 'R2':
        axes[i].set_ylabel('$W/m^2$')
    else:
        axes[i].set_ylim(0,1)

    axes[i].set_title(f'({letters[i]}) {data.metrics_names[i]}')
axes[i].set_xlabel('Output variable')
axes[i].set_xticklabels(plot_df_byvar[data.metrics_names[i]].index, \
    rotation=0, ha='center')

axes[0].legend(columnspacing = .9, 
               labelspacing = .3,
               handleheight = .07,
               handlelength = 1.5,
               handletextpad = .2,
               borderpad = .2,
               ncol = 3,
               loc = 'upper right')
fig.set_size_inches(7,8)
fig.tight_layout()''')

letters = string.ascii_lowercase

dict_var = data.metrics_var_scoring
plot_df_byvar = {}
for metric in data.metrics_names:
    plot_df_byvar[metric] = pd.DataFrame([dict_var[model][metric] for model in data.model_names],
                                               index=data.model_names)
    plot_df_byvar[metric] = plot_df_byvar[metric].rename(columns = data.var_short_names).transpose()

fig, axes = plt.subplots(nrows  = len(data.metrics_names), sharex = True)
for i in range(len(data.metrics_names)):
    plot_df_byvar[data.metrics_names[i]].plot.bar(
        legend = False,
        ax = axes[i])
    if data.metrics_names[i] != 'R2':
        axes[i].set_ylabel('$W/m^2$')
    else:
        axes[i].set_ylim(0,1)

    axes[i].set_title(f'({letters[i]}) {data.metrics_names[i]}')
axes[i].set_xlabel('Output variable')
axes[i].set_xticklabels(plot_df_byvar[data.metrics_names[i]].index, \
    rotation=0, ha='center')

axes[0].legend(columnspacing = .9,
               labelspacing = .3,
               handleheight = .07,
               handlelength = 1.5,
               handletextpad = .2,
               borderpad = .2,
               ncol = 3,
               loc = 'upper right')
fig.set_size_inches(7,8)
fig.tight_layout()

st.pyplot(fig)