Update app.py
Browse files
app.py
CHANGED
@@ -32,4 +32,29 @@ data.target_train = data.load_npy_file('train_target_small.npy')
|
|
32 |
data.input_val = data.load_npy_file('val_input_small.npy')
|
33 |
data.target_val = data.load_npy_file('val_target_small.npy')
|
34 |
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
data.input_val = data.load_npy_file('val_input_small.npy')
|
33 |
data.target_val = data.load_npy_file('val_target_small.npy')
|
34 |
|
35 |
+
|
36 |
+
const_model = data.target_train.mean(axis = 0)
|
37 |
+
X = data.input_train
|
38 |
+
bias_vector = np.ones((X.shape[0], 1))
|
39 |
+
X = np.concatenate((X, bias_vector), axis=1)
|
40 |
+
mlr_weights = np.linalg.inv(X.transpose()@X)@X.transpose()@data.target_train
|
41 |
+
data.set_pressure_grid(data_split = 'val')
|
42 |
+
|
43 |
+
const_pred_val = np.repeat(const_model[np.newaxis, :], data.target_val.shape[0], axis = 0)
|
44 |
+
print(const_pred_val.shape)
|
45 |
+
|
46 |
+
# Multiple Linear Regression
|
47 |
+
X_val = data.input_val
|
48 |
+
bias_vector_val = np.ones((X_val.shape[0], 1))
|
49 |
+
X_val = np.concatenate((X_val, bias_vector_val), axis=1)
|
50 |
+
mlr_pred_val = X_val@mlr_weights
|
51 |
+
print(mlr_pred_val.shape)
|
52 |
+
|
53 |
+
# Load your prediction here
|
54 |
+
|
55 |
+
# Load predictions into data_utils object
|
56 |
+
data.model_names = ['const', 'mlr'] # add names of your models here
|
57 |
+
preds = [const_pred_val, mlr_pred_val] # add your custom predictions here
|
58 |
+
data.preds_val = dict(zip(data.model_names, preds))
|
59 |
+
|
60 |
+
st.markdown('Streamlit c')
|