Update app.py
Browse files
app.py
CHANGED
@@ -37,6 +37,8 @@ data = data_utils(grid_info = grid_info,
|
|
37 |
input_max = input_max,
|
38 |
input_min = input_min,
|
39 |
output_scale = output_scale)
|
|
|
|
|
40 |
data.set_to_v1_vars()''',language='python')
|
41 |
|
42 |
grid_info = xr.open_dataset('ClimSim_low-res_grid-info.nc')
|
@@ -71,7 +73,7 @@ data.target_val = data.load_npy_file('val_target_small.npy')
|
|
71 |
|
72 |
st.header('**Step 4:** Train models')
|
73 |
st.subheader('Train constant prediction model')
|
74 |
-
st.latex(r'''\hat{y}=E[y_{
|
75 |
st.code('''const_model = data.target_train.mean(axis = 0)''',language='python')
|
76 |
|
77 |
const_model = data.target_train.mean(axis = 0)
|
@@ -80,7 +82,7 @@ const_model = data.target_train.mean(axis = 0)
|
|
80 |
|
81 |
st.subheader('Train multiple linear regression model')
|
82 |
st.latex(r'''\beta=(X^{T}_{train} X_{train})^{-1} X^{T}_{train} y_{train} \\
|
83 |
-
\hat{y}=X^{T}_{
|
84 |
\text{where } X_{train} \text{ and } X_{input} \text{ correspond to the training data and the input data you would like to inference on, respectively.} \\
|
85 |
X_{train} \text{ and } X_{input} \text{ both have a column of ones concatenated to the feature space for the bias.}''')
|
86 |
st.text('adding bias unit')
|
|
|
37 |
input_max = input_max,
|
38 |
input_min = input_min,
|
39 |
output_scale = output_scale)
|
40 |
+
|
41 |
+
# set variables to V1 subset
|
42 |
data.set_to_v1_vars()''',language='python')
|
43 |
|
44 |
grid_info = xr.open_dataset('ClimSim_low-res_grid-info.nc')
|
|
|
73 |
|
74 |
st.header('**Step 4:** Train models')
|
75 |
st.subheader('Train constant prediction model')
|
76 |
+
st.latex(r'''\hat{y}=E[y_{train}]''')
|
77 |
st.code('''const_model = data.target_train.mean(axis = 0)''',language='python')
|
78 |
|
79 |
const_model = data.target_train.mean(axis = 0)
|
|
|
82 |
|
83 |
st.subheader('Train multiple linear regression model')
|
84 |
st.latex(r'''\beta=(X^{T}_{train} X_{train})^{-1} X^{T}_{train} y_{train} \\
|
85 |
+
\hat{y}=X^{T}_{input} \beta \\
|
86 |
\text{where } X_{train} \text{ and } X_{input} \text{ correspond to the training data and the input data you would like to inference on, respectively.} \\
|
87 |
X_{train} \text{ and } X_{input} \text{ both have a column of ones concatenated to the feature space for the bias.}''')
|
88 |
st.text('adding bias unit')
|