Update app.py
Browse files
app.py
CHANGED
@@ -19,16 +19,23 @@ st.title('A _Quickstart Notebook_ for :blue[ClimSim]:')
|
|
19 |
st.link_button("ClimSim", "https://huggingface.co/datasets/LEAP/subsampled_low_res/tree/main",use_container_width=True)
|
20 |
st.header('**Step 1:** Import data_utils')
|
21 |
st.code('''from data_utils import *''',language='python')
|
22 |
-
st.header('**Step 2:** Instantiate class')
|
23 |
-
st.header('**Step 3:** Load training and validation data')
|
24 |
-
|
25 |
-
st.header('**Step 4:** Train models')
|
26 |
-
st.subheader('Train constant prediction model')
|
27 |
-
st.link_button("Go to Original Dataset", "https://huggingface.co/datasets/LEAP/subsampled_low_res/tree/main",,use_container_width=True)
|
28 |
-
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
|
|
32 |
grid_info = xr.open_dataset('ClimSim_low-res_grid-info.nc')
|
33 |
input_mean = xr.open_dataset('input_mean.nc')
|
34 |
input_max = xr.open_dataset('input_max.nc')
|
@@ -43,19 +50,74 @@ data = data_utils(grid_info = grid_info,
|
|
43 |
|
44 |
data.set_to_v1_vars()
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
data.input_train = data.load_npy_file('train_input_small.npy')
|
47 |
data.target_train = data.load_npy_file('train_target_small.npy')
|
48 |
data.input_val = data.load_npy_file('val_input_small.npy')
|
49 |
data.target_val = data.load_npy_file('val_target_small.npy')
|
50 |
|
51 |
|
|
|
|
|
|
|
|
|
52 |
const_model = data.target_train.mean(axis = 0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
X = data.input_train
|
54 |
bias_vector = np.ones((X.shape[0], 1))
|
55 |
X = np.concatenate((X, bias_vector), axis=1)
|
|
|
|
|
|
|
|
|
|
|
56 |
mlr_weights = np.linalg.inv(X.transpose()@X)@X.transpose()@data.target_train
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
data.set_pressure_grid(data_split = 'val')
|
58 |
|
|
|
59 |
const_pred_val = np.repeat(const_model[np.newaxis, :], data.target_val.shape[0], axis = 0)
|
60 |
print(const_pred_val.shape)
|
61 |
|
@@ -63,6 +125,7 @@ print(const_pred_val.shape)
|
|
63 |
X_val = data.input_val
|
64 |
bias_vector_val = np.ones((X_val.shape[0], 1))
|
65 |
X_val = np.concatenate((X_val, bias_vector_val), axis=1)
|
|
|
66 |
mlr_pred_val = X_val@mlr_weights
|
67 |
print(mlr_pred_val.shape)
|
68 |
|
@@ -73,13 +136,11 @@ data.model_names = ['const', 'mlr'] # add names of your models here
|
|
73 |
preds = [const_pred_val, mlr_pred_val] # add your custom predictions here
|
74 |
data.preds_val = dict(zip(data.model_names, preds))
|
75 |
|
76 |
-
|
77 |
data.reweight_target(data_split = 'val')
|
78 |
data.reweight_preds(data_split = 'val')
|
79 |
data.metrics_names = ['MAE', 'RMSE', 'R2', 'bias']
|
80 |
data.create_metrics_df(data_split = 'val')
|
81 |
|
82 |
-
|
83 |
letters = string.ascii_lowercase
|
84 |
|
85 |
# create custom dictionary for plotting
|
|
|
19 |
st.link_button("ClimSim", "https://huggingface.co/datasets/LEAP/subsampled_low_res/tree/main",use_container_width=True)
|
20 |
st.header('**Step 1:** Import data_utils')
|
21 |
st.code('''from data_utils import *''',language='python')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
st.header('**Step 2:** Instantiate class')
|
24 |
+
st.code('''#Change the path to your own
|
25 |
+
grid_info = xr.open_dataset('ClimSim_low-res_grid-info.nc')
|
26 |
+
input_mean = xr.open_dataset('input_mean.nc')
|
27 |
+
input_max = xr.open_dataset('input_max.nc')
|
28 |
+
input_min = xr.open_dataset('input_min.nc')
|
29 |
+
output_scale = xr.open_dataset('output_scale.nc')
|
30 |
|
31 |
+
data = data_utils(grid_info = grid_info,
|
32 |
+
input_mean = input_mean,
|
33 |
+
input_max = input_max,
|
34 |
+
input_min = input_min,
|
35 |
+
output_scale = output_scale)
|
36 |
+
data.set_to_v1_vars()''',language='python')
|
37 |
|
38 |
+
#Change the path to your own
|
39 |
grid_info = xr.open_dataset('ClimSim_low-res_grid-info.nc')
|
40 |
input_mean = xr.open_dataset('input_mean.nc')
|
41 |
input_max = xr.open_dataset('input_max.nc')
|
|
|
50 |
|
51 |
data.set_to_v1_vars()
|
52 |
|
53 |
+
|
54 |
+
st.header('**Step 3:** Load training and validation data')
|
55 |
+
st.code('''data.input_train = data.load_npy_file('train_input_small.npy')
|
56 |
+
data.target_train = data.load_npy_file('train_target_small.npy')
|
57 |
+
data.input_val = data.load_npy_file('val_input_small.npy')
|
58 |
+
data.target_val = data.load_npy_file('val_target_small.npy')''',language='python')
|
59 |
+
|
60 |
data.input_train = data.load_npy_file('train_input_small.npy')
|
61 |
data.target_train = data.load_npy_file('train_target_small.npy')
|
62 |
data.input_val = data.load_npy_file('val_input_small.npy')
|
63 |
data.target_val = data.load_npy_file('val_target_small.npy')
|
64 |
|
65 |
|
66 |
+
st.header('**Step 4:** Train models')
|
67 |
+
st.subheader('Train constant prediction model')
|
68 |
+
st.code('''const_model = data.target_train.mean(axis = 0)''',language='python')
|
69 |
+
|
70 |
const_model = data.target_train.mean(axis = 0)
|
71 |
+
|
72 |
+
|
73 |
+
st.subheader('Train multiple linear regression model')
|
74 |
+
st.text('adding bias unit')
|
75 |
+
st.code('''X = data.input_train
|
76 |
+
bias_vector = np.ones((X.shape[0], 1))
|
77 |
+
X = np.concatenate((X, bias_vector), axis=1)''',language='python')
|
78 |
+
|
79 |
X = data.input_train
|
80 |
bias_vector = np.ones((X.shape[0], 1))
|
81 |
X = np.concatenate((X, bias_vector), axis=1)
|
82 |
+
|
83 |
+
|
84 |
+
st.text('create model')
|
85 |
+
st.code('''mlr_weights = np.linalg.inv(X.transpose()@X)@X.transpose()@data.target_train''',language='python')
|
86 |
+
|
87 |
mlr_weights = np.linalg.inv(X.transpose()@X)@X.transpose()@data.target_train
|
88 |
+
|
89 |
+
|
90 |
+
st.subheader('Train your models here')
|
91 |
+
st.code('''###
|
92 |
+
# train your model here
|
93 |
+
###''',language='python')
|
94 |
+
|
95 |
+
###
|
96 |
+
# train your model here
|
97 |
+
###
|
98 |
+
|
99 |
+
|
100 |
+
st.link_button("Go to Original Dataset", "https://huggingface.co/datasets/LEAP/subsampled_low_res/tree/main",use_container_width=True)
|
101 |
+
|
102 |
+
st.header('**Step 5:** Evaluate on validation data')
|
103 |
+
|
104 |
+
|
105 |
+
|
106 |
+
|
107 |
+
|
108 |
+
|
109 |
+
|
110 |
+
|
111 |
+
|
112 |
+
|
113 |
+
|
114 |
+
|
115 |
+
|
116 |
+
|
117 |
+
|
118 |
data.set_pressure_grid(data_split = 'val')
|
119 |
|
120 |
+
# Constant Prediction
|
121 |
const_pred_val = np.repeat(const_model[np.newaxis, :], data.target_val.shape[0], axis = 0)
|
122 |
print(const_pred_val.shape)
|
123 |
|
|
|
125 |
X_val = data.input_val
|
126 |
bias_vector_val = np.ones((X_val.shape[0], 1))
|
127 |
X_val = np.concatenate((X_val, bias_vector_val), axis=1)
|
128 |
+
|
129 |
mlr_pred_val = X_val@mlr_weights
|
130 |
print(mlr_pred_val.shape)
|
131 |
|
|
|
136 |
preds = [const_pred_val, mlr_pred_val] # add your custom predictions here
|
137 |
data.preds_val = dict(zip(data.model_names, preds))
|
138 |
|
|
|
139 |
data.reweight_target(data_split = 'val')
|
140 |
data.reweight_preds(data_split = 'val')
|
141 |
data.metrics_names = ['MAE', 'RMSE', 'R2', 'bias']
|
142 |
data.create_metrics_df(data_split = 'val')
|
143 |
|
|
|
144 |
letters = string.ascii_lowercase
|
145 |
|
146 |
# create custom dictionary for plotting
|