Update app.py
Browse files
app.py
CHANGED
@@ -16,10 +16,12 @@ from tqdm import tqdm
|
|
16 |
|
17 |
|
18 |
st.title('A _Quickstart Notebook_ for :blue[ClimSim]:')
|
19 |
-
st.link_button("ClimSim", "https://
|
20 |
st.header('**Step 1:** Import data_utils')
|
21 |
st.code('''from data_utils import *''',language='python')
|
22 |
|
|
|
|
|
23 |
st.header('**Step 2:** Instantiate class')
|
24 |
st.code('''#Change the path to your own
|
25 |
grid_info = xr.open_dataset('ClimSim_low-res_grid-info.nc')
|
@@ -35,7 +37,6 @@ data = data_utils(grid_info = grid_info,
|
|
35 |
output_scale = output_scale)
|
36 |
data.set_to_v1_vars()''',language='python')
|
37 |
|
38 |
-
#Change the path to your own
|
39 |
grid_info = xr.open_dataset('ClimSim_low-res_grid-info.nc')
|
40 |
input_mean = xr.open_dataset('input_mean.nc')
|
41 |
input_max = xr.open_dataset('input_max.nc')
|
@@ -51,7 +52,9 @@ data = data_utils(grid_info = grid_info,
|
|
51 |
data.set_to_v1_vars()
|
52 |
|
53 |
|
|
|
54 |
st.header('**Step 3:** Load training and validation data')
|
|
|
55 |
st.code('''data.input_train = data.load_npy_file('train_input_small.npy')
|
56 |
data.target_train = data.load_npy_file('train_target_small.npy')
|
57 |
data.input_val = data.load_npy_file('val_input_small.npy')
|
@@ -63,6 +66,7 @@ data.input_val = data.load_npy_file('val_input_small.npy')
|
|
63 |
data.target_val = data.load_npy_file('val_target_small.npy')
|
64 |
|
65 |
|
|
|
66 |
st.header('**Step 4:** Train models')
|
67 |
st.subheader('Train constant prediction model')
|
68 |
st.code('''const_model = data.target_train.mean(axis = 0)''',language='python')
|
@@ -70,6 +74,7 @@ st.code('''const_model = data.target_train.mean(axis = 0)''',language='python')
|
|
70 |
const_model = data.target_train.mean(axis = 0)
|
71 |
|
72 |
|
|
|
73 |
st.subheader('Train multiple linear regression model')
|
74 |
st.text('adding bias unit')
|
75 |
st.code('''X = data.input_train
|
@@ -81,47 +86,51 @@ bias_vector = np.ones((X.shape[0], 1))
|
|
81 |
X = np.concatenate((X, bias_vector), axis=1)
|
82 |
|
83 |
|
|
|
84 |
st.text('create model')
|
85 |
st.code('''mlr_weights = np.linalg.inv(X.transpose()@X)@X.transpose()@data.target_train''',language='python')
|
86 |
|
87 |
mlr_weights = np.linalg.inv(X.transpose()@X)@X.transpose()@data.target_train
|
88 |
|
89 |
|
|
|
90 |
st.subheader('Train your models here')
|
91 |
st.code('''###
|
92 |
# train your model here
|
93 |
###''',language='python')
|
94 |
|
95 |
-
###
|
96 |
-
# train your model here
|
97 |
-
###
|
98 |
-
|
99 |
-
|
100 |
-
st.link_button("Go to Original Dataset", "https://huggingface.co/datasets/LEAP/subsampled_low_res/tree/main",use_container_width=True)
|
101 |
|
102 |
st.header('**Step 5:** Evaluate on validation data')
|
|
|
|
|
103 |
|
|
|
104 |
|
105 |
|
106 |
|
|
|
|
|
|
|
|
|
107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
|
|
109 |
|
|
|
|
|
|
|
|
|
110 |
|
111 |
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
data.set_pressure_grid(data_split = 'val')
|
119 |
-
|
120 |
-
# Constant Prediction
|
121 |
const_pred_val = np.repeat(const_model[np.newaxis, :], data.target_val.shape[0], axis = 0)
|
122 |
print(const_pred_val.shape)
|
123 |
|
124 |
-
# Multiple Linear Regression
|
125 |
X_val = data.input_val
|
126 |
bias_vector_val = np.ones((X_val.shape[0], 1))
|
127 |
X_val = np.concatenate((X_val, bias_vector_val), axis=1)
|
@@ -129,18 +138,37 @@ X_val = np.concatenate((X_val, bias_vector_val), axis=1)
|
|
129 |
mlr_pred_val = X_val@mlr_weights
|
130 |
print(mlr_pred_val.shape)
|
131 |
|
132 |
-
# Load your prediction here
|
133 |
-
|
134 |
-
# Load predictions into data_utils object
|
135 |
data.model_names = ['const', 'mlr'] # add names of your models here
|
136 |
preds = [const_pred_val, mlr_pred_val] # add your custom predictions here
|
137 |
data.preds_val = dict(zip(data.model_names, preds))
|
138 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
data.reweight_target(data_split = 'val')
|
140 |
data.reweight_preds(data_split = 'val')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
data.metrics_names = ['MAE', 'RMSE', 'R2', 'bias']
|
142 |
data.create_metrics_df(data_split = 'val')
|
143 |
|
|
|
|
|
|
|
|
|
|
|
144 |
letters = string.ascii_lowercase
|
145 |
|
146 |
# create custom dictionary for plotting
|
@@ -152,6 +180,41 @@ for metric in data.metrics_names:
|
|
152 |
plot_df_byvar[metric] = plot_df_byvar[metric].rename(columns = data.var_short_names).transpose()
|
153 |
|
154 |
# plot figure
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
fig, axes = plt.subplots(nrows = len(data.metrics_names), sharex = True)
|
156 |
for i in range(len(data.metrics_names)):
|
157 |
plot_df_byvar[data.metrics_names[i]].plot.bar(
|
@@ -163,8 +226,6 @@ for i in range(len(data.metrics_names)):
|
|
163 |
axes[i].set_ylim(0,1)
|
164 |
axes[i].set_title(f'({letters[i]}) {data.metrics_names[i]}')
|
165 |
|
166 |
-
|
167 |
-
|
168 |
axes[i].set_xlabel('Output variable')
|
169 |
axes[i].set_xticklabels(plot_df_byvar[data.metrics_names[i]].index, \
|
170 |
rotation=0, ha='center')
|
@@ -179,14 +240,32 @@ axes[0].legend(columnspacing = .9,
|
|
179 |
loc = 'upper right')
|
180 |
fig.set_size_inches(7,8)
|
181 |
fig.tight_layout()
|
|
|
182 |
st.pyplot(fig)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
|
184 |
-
# path to target input
|
185 |
data.input_scoring = np.load('scoring_input_small.npy')
|
186 |
-
# path to target output
|
187 |
data.target_scoring = np.load('scoring_target_small.npy')
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
data.set_pressure_grid(data_split = 'scoring')
|
189 |
-
|
|
|
|
|
|
|
|
|
190 |
const_pred_scoring = np.repeat(const_model[np.newaxis, :], data.target_scoring.shape[0], axis = 0)
|
191 |
print(const_pred_scoring.shape)
|
192 |
|
@@ -200,9 +279,37 @@ print(mlr_pred_scoring.shape)
|
|
200 |
# Your model prediction here
|
201 |
|
202 |
# Load predictions into object
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
data.model_names = ['const', 'mlr'] # model name here
|
204 |
preds = [const_pred_scoring, mlr_pred_scoring] # add prediction here
|
205 |
data.preds_scoring = dict(zip(data.model_names, preds))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
# weight predictions and target
|
207 |
data.reweight_target(data_split = 'scoring')
|
208 |
data.reweight_preds(data_split = 'scoring')
|
@@ -211,8 +318,12 @@ data.reweight_preds(data_split = 'scoring')
|
|
211 |
data.metrics_names = ['MAE', 'RMSE', 'R2', 'bias']
|
212 |
data.create_metrics_df(data_split = 'scoring')
|
213 |
|
214 |
-
# set plotting settings
|
215 |
|
|
|
|
|
|
|
|
|
|
|
216 |
letters = string.ascii_lowercase
|
217 |
|
218 |
# create custom dictionary for plotting
|
@@ -239,6 +350,41 @@ axes[i].set_xlabel('Output variable')
|
|
239 |
axes[i].set_xticklabels(plot_df_byvar[data.metrics_names[i]].index, \
|
240 |
rotation=0, ha='center')
|
241 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
axes[0].legend(columnspacing = .9,
|
243 |
labelspacing = .3,
|
244 |
handleheight = .07,
|
@@ -249,6 +395,7 @@ axes[0].legend(columnspacing = .9,
|
|
249 |
loc = 'upper right')
|
250 |
fig.set_size_inches(7,8)
|
251 |
fig.tight_layout()
|
|
|
252 |
st.pyplot(fig)
|
253 |
|
254 |
-
st.
|
|
|
16 |
|
17 |
|
18 |
st.title('A _Quickstart Notebook_ for :blue[ClimSim]:')
|
19 |
+
st.link_button("Go to ClimSim Github Repository", "https://github.com/leap-stc/ClimSim/tree/main",use_container_width=True)
|
20 |
st.header('**Step 1:** Import data_utils')
|
21 |
st.code('''from data_utils import *''',language='python')
|
22 |
|
23 |
+
|
24 |
+
|
25 |
st.header('**Step 2:** Instantiate class')
|
26 |
st.code('''#Change the path to your own
|
27 |
grid_info = xr.open_dataset('ClimSim_low-res_grid-info.nc')
|
|
|
37 |
output_scale = output_scale)
|
38 |
data.set_to_v1_vars()''',language='python')
|
39 |
|
|
|
40 |
grid_info = xr.open_dataset('ClimSim_low-res_grid-info.nc')
|
41 |
input_mean = xr.open_dataset('input_mean.nc')
|
42 |
input_max = xr.open_dataset('input_max.nc')
|
|
|
52 |
data.set_to_v1_vars()
|
53 |
|
54 |
|
55 |
+
|
56 |
st.header('**Step 3:** Load training and validation data')
|
57 |
+
st.link_button("Go to Original Dataset", "https://huggingface.co/datasets/LEAP/subsampled_low_res/tree/main",use_container_width=True)
|
58 |
st.code('''data.input_train = data.load_npy_file('train_input_small.npy')
|
59 |
data.target_train = data.load_npy_file('train_target_small.npy')
|
60 |
data.input_val = data.load_npy_file('val_input_small.npy')
|
|
|
66 |
data.target_val = data.load_npy_file('val_target_small.npy')
|
67 |
|
68 |
|
69 |
+
|
70 |
st.header('**Step 4:** Train models')
|
71 |
st.subheader('Train constant prediction model')
|
72 |
st.code('''const_model = data.target_train.mean(axis = 0)''',language='python')
|
|
|
74 |
const_model = data.target_train.mean(axis = 0)
|
75 |
|
76 |
|
77 |
+
|
78 |
st.subheader('Train multiple linear regression model')
|
79 |
st.text('adding bias unit')
|
80 |
st.code('''X = data.input_train
|
|
|
86 |
X = np.concatenate((X, bias_vector), axis=1)
|
87 |
|
88 |
|
89 |
+
|
90 |
st.text('create model')
|
91 |
st.code('''mlr_weights = np.linalg.inv(X.transpose()@X)@X.transpose()@data.target_train''',language='python')
|
92 |
|
93 |
mlr_weights = np.linalg.inv(X.transpose()@X)@X.transpose()@data.target_train
|
94 |
|
95 |
|
96 |
+
|
97 |
st.subheader('Train your models here')
|
98 |
st.code('''###
|
99 |
# train your model here
|
100 |
###''',language='python')
|
101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
st.header('**Step 5:** Evaluate on validation data')
|
104 |
+
st.subheader('Set pressure grid')
|
105 |
+
st.code('''data.set_pressure_grid(data_split = 'val')''',language='python')
|
106 |
|
107 |
+
data.set_pressure_grid(data_split = 'val')
|
108 |
|
109 |
|
110 |
|
111 |
+
st.subheader('Load predictions')
|
112 |
+
st.code('''# Constant Prediction
|
113 |
+
const_pred_val = np.repeat(const_model[np.newaxis, :], data.target_val.shape[0], axis = 0)
|
114 |
+
print(const_pred_val.shape)
|
115 |
|
116 |
+
# Multiple Linear Regression
|
117 |
+
X_val = data.input_val
|
118 |
+
bias_vector_val = np.ones((X_val.shape[0], 1))
|
119 |
+
X_val = np.concatenate((X_val, bias_vector_val), axis=1)
|
120 |
+
mlr_pred_val = X_val@mlr_weights
|
121 |
+
print(mlr_pred_val.shape)
|
122 |
|
123 |
+
# Load your prediction here
|
124 |
|
125 |
+
# Load predictions into data_utils object
|
126 |
+
data.model_names = ['const', 'mlr'] # add names of your models here
|
127 |
+
preds = [const_pred_val, mlr_pred_val] # add your custom predictions here
|
128 |
+
data.preds_val = dict(zip(data.model_names, preds))''',language='python')
|
129 |
|
130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
const_pred_val = np.repeat(const_model[np.newaxis, :], data.target_val.shape[0], axis = 0)
|
132 |
print(const_pred_val.shape)
|
133 |
|
|
|
134 |
X_val = data.input_val
|
135 |
bias_vector_val = np.ones((X_val.shape[0], 1))
|
136 |
X_val = np.concatenate((X_val, bias_vector_val), axis=1)
|
|
|
138 |
mlr_pred_val = X_val@mlr_weights
|
139 |
print(mlr_pred_val.shape)
|
140 |
|
|
|
|
|
|
|
141 |
data.model_names = ['const', 'mlr'] # add names of your models here
|
142 |
preds = [const_pred_val, mlr_pred_val] # add your custom predictions here
|
143 |
data.preds_val = dict(zip(data.model_names, preds))
|
144 |
|
145 |
+
|
146 |
+
|
147 |
+
st.subheader('Weight predictions and target')
|
148 |
+
st.text('''1.Undo output scaling
|
149 |
+
2.Weight vertical levels by dp/g
|
150 |
+
3.Weight horizontal area of each grid cell by a[x]/mean(a[x])
|
151 |
+
4.Convert units to a common energy unit''')
|
152 |
+
st.code('''data.reweight_target(data_split = 'val')
|
153 |
+
data.reweight_preds(data_split = 'val')''',language='python')
|
154 |
+
|
155 |
data.reweight_target(data_split = 'val')
|
156 |
data.reweight_preds(data_split = 'val')
|
157 |
+
|
158 |
+
|
159 |
+
|
160 |
+
st.subheader('Set and calculate metrics')
|
161 |
+
st.code('''data.metrics_names = ['MAE', 'RMSE', 'R2', 'bias']
|
162 |
+
data.create_metrics_df(data_split = 'val')''',language='python')
|
163 |
+
|
164 |
data.metrics_names = ['MAE', 'RMSE', 'R2', 'bias']
|
165 |
data.create_metrics_df(data_split = 'val')
|
166 |
|
167 |
+
|
168 |
+
|
169 |
+
st.subheader('Create plots')
|
170 |
+
st.code('''# set plotting settings
|
171 |
+
%config InlineBackend.figure_format = 'retina'
|
172 |
letters = string.ascii_lowercase
|
173 |
|
174 |
# create custom dictionary for plotting
|
|
|
180 |
plot_df_byvar[metric] = plot_df_byvar[metric].rename(columns = data.var_short_names).transpose()
|
181 |
|
182 |
# plot figure
|
183 |
+
fig, axes = plt.subplots(nrows = len(data.metrics_names), sharex = True)
|
184 |
+
for i in range(len(data.metrics_names)):
|
185 |
+
plot_df_byvar[data.metrics_names[i]].plot.bar(
|
186 |
+
legend = False,
|
187 |
+
ax = axes[i])
|
188 |
+
if data.metrics_names[i] != 'R2':
|
189 |
+
axes[i].set_ylabel('$W/m^2$')
|
190 |
+
else:
|
191 |
+
axes[i].set_ylim(0,1)
|
192 |
+
|
193 |
+
axes[i].set_title(f'({letters[i]}) {data.metrics_names[i]}')
|
194 |
+
axes[i].set_xlabel('Output variable')
|
195 |
+
axes[i].set_xticklabels(plot_df_byvar[data.metrics_names[i]].index, \
|
196 |
+
rotation=0, ha='center')
|
197 |
+
|
198 |
+
axes[0].legend(columnspacing = .9,
|
199 |
+
labelspacing = .3,
|
200 |
+
handleheight = .07,
|
201 |
+
handlelength = 1.5,
|
202 |
+
handletextpad = .2,
|
203 |
+
borderpad = .2,
|
204 |
+
ncol = 3,
|
205 |
+
loc = 'upper right')
|
206 |
+
fig.set_size_inches(7,8)
|
207 |
+
fig.tight_layout()''',language='python')
|
208 |
+
|
209 |
+
letters = string.ascii_lowercase
|
210 |
+
|
211 |
+
dict_var = data.metrics_var_val
|
212 |
+
plot_df_byvar = {}
|
213 |
+
for metric in data.metrics_names:
|
214 |
+
plot_df_byvar[metric] = pd.DataFrame([dict_var[model][metric] for model in data.model_names],
|
215 |
+
index=data.model_names)
|
216 |
+
plot_df_byvar[metric] = plot_df_byvar[metric].rename(columns = data.var_short_names).transpose()
|
217 |
+
|
218 |
fig, axes = plt.subplots(nrows = len(data.metrics_names), sharex = True)
|
219 |
for i in range(len(data.metrics_names)):
|
220 |
plot_df_byvar[data.metrics_names[i]].plot.bar(
|
|
|
226 |
axes[i].set_ylim(0,1)
|
227 |
axes[i].set_title(f'({letters[i]}) {data.metrics_names[i]}')
|
228 |
|
|
|
|
|
229 |
axes[i].set_xlabel('Output variable')
|
230 |
axes[i].set_xticklabels(plot_df_byvar[data.metrics_names[i]].index, \
|
231 |
rotation=0, ha='center')
|
|
|
240 |
loc = 'upper right')
|
241 |
fig.set_size_inches(7,8)
|
242 |
fig.tight_layout()
|
243 |
+
|
244 |
st.pyplot(fig)
|
245 |
+
st.text('If you trained models with different hyperparameters, use the ones that performed the best on validation data for evaluation on scoring data.')
|
246 |
+
|
247 |
+
|
248 |
+
st.header('**Step 6:** Evaluate on scoring data')
|
249 |
+
st.subheader('Do this at the VERY END (when you have finished tuned the hyperparameters for your model and are seeking a final evaluation)')
|
250 |
+
st.subheader('Load scoring data')
|
251 |
+
st.code('''data.input_scoring = np.load('scoring_input_small.npy')
|
252 |
+
data.target_scoring = np.load('scoring_target_small.npy')
|
253 |
+
''',language='python')
|
254 |
|
|
|
255 |
data.input_scoring = np.load('scoring_input_small.npy')
|
|
|
256 |
data.target_scoring = np.load('scoring_target_small.npy')
|
257 |
+
|
258 |
+
|
259 |
+
|
260 |
+
st.subheader('Set pressure grid')
|
261 |
+
st.code('''data.set_pressure_grid(data_split = 'scoring')''',language='python')
|
262 |
+
|
263 |
data.set_pressure_grid(data_split = 'scoring')
|
264 |
+
|
265 |
+
|
266 |
+
|
267 |
+
st.subheader('Load predictions')
|
268 |
+
st.code('''# constant prediction
|
269 |
const_pred_scoring = np.repeat(const_model[np.newaxis, :], data.target_scoring.shape[0], axis = 0)
|
270 |
print(const_pred_scoring.shape)
|
271 |
|
|
|
279 |
# Your model prediction here
|
280 |
|
281 |
# Load predictions into object
|
282 |
+
data.model_names = ['const', 'mlr'] # model name here
|
283 |
+
preds = [const_pred_scoring, mlr_pred_scoring] # add prediction here
|
284 |
+
data.preds_scoring = dict(zip(data.model_names, preds))''',language='python')
|
285 |
+
|
286 |
+
const_pred_scoring = np.repeat(const_model[np.newaxis, :], data.target_scoring.shape[0], axis = 0)
|
287 |
+
print(const_pred_scoring.shape)
|
288 |
+
|
289 |
+
X_scoring = data.input_scoring
|
290 |
+
bias_vector_scoring = np.ones((X_scoring.shape[0], 1))
|
291 |
+
X_scoring = np.concatenate((X_scoring, bias_vector_scoring), axis=1)
|
292 |
+
mlr_pred_scoring = X_scoring@mlr_weights
|
293 |
+
print(mlr_pred_scoring.shape)
|
294 |
+
|
295 |
data.model_names = ['const', 'mlr'] # model name here
|
296 |
preds = [const_pred_scoring, mlr_pred_scoring] # add prediction here
|
297 |
data.preds_scoring = dict(zip(data.model_names, preds))
|
298 |
+
|
299 |
+
|
300 |
+
st.subheader('Weight predictions and target')
|
301 |
+
st.text('''1.Undo output scaling
|
302 |
+
2.Weight vertical levels by dp/g
|
303 |
+
3.Weight horizontal area of each grid cell by a[x]/mean(a[x])
|
304 |
+
4.Convert units to a common energy unit''')
|
305 |
+
st.code('''# weight predictions and target
|
306 |
+
data.reweight_target(data_split = 'scoring')
|
307 |
+
data.reweight_preds(data_split = 'scoring')
|
308 |
+
|
309 |
+
# set and calculate metrics
|
310 |
+
data.metrics_names = ['MAE', 'RMSE', 'R2', 'bias']
|
311 |
+
data.create_metrics_df(data_split = 'scoring')''',language='python')
|
312 |
+
|
313 |
# weight predictions and target
|
314 |
data.reweight_target(data_split = 'scoring')
|
315 |
data.reweight_preds(data_split = 'scoring')
|
|
|
318 |
data.metrics_names = ['MAE', 'RMSE', 'R2', 'bias']
|
319 |
data.create_metrics_df(data_split = 'scoring')
|
320 |
|
|
|
321 |
|
322 |
+
|
323 |
+
|
324 |
+
st.subheader('Create plots')
|
325 |
+
st.code('''# set plotting settings
|
326 |
+
%config InlineBackend.figure_format = 'retina'
|
327 |
letters = string.ascii_lowercase
|
328 |
|
329 |
# create custom dictionary for plotting
|
|
|
350 |
axes[i].set_xticklabels(plot_df_byvar[data.metrics_names[i]].index, \
|
351 |
rotation=0, ha='center')
|
352 |
|
353 |
+
axes[0].legend(columnspacing = .9,
|
354 |
+
labelspacing = .3,
|
355 |
+
handleheight = .07,
|
356 |
+
handlelength = 1.5,
|
357 |
+
handletextpad = .2,
|
358 |
+
borderpad = .2,
|
359 |
+
ncol = 3,
|
360 |
+
loc = 'upper right')
|
361 |
+
fig.set_size_inches(7,8)
|
362 |
+
fig.tight_layout()''')
|
363 |
+
|
364 |
+
letters = string.ascii_lowercase
|
365 |
+
|
366 |
+
dict_var = data.metrics_var_scoring
|
367 |
+
plot_df_byvar = {}
|
368 |
+
for metric in data.metrics_names:
|
369 |
+
plot_df_byvar[metric] = pd.DataFrame([dict_var[model][metric] for model in data.model_names],
|
370 |
+
index=data.model_names)
|
371 |
+
plot_df_byvar[metric] = plot_df_byvar[metric].rename(columns = data.var_short_names).transpose()
|
372 |
+
|
373 |
+
fig, axes = plt.subplots(nrows = len(data.metrics_names), sharex = True)
|
374 |
+
for i in range(len(data.metrics_names)):
|
375 |
+
plot_df_byvar[data.metrics_names[i]].plot.bar(
|
376 |
+
legend = False,
|
377 |
+
ax = axes[i])
|
378 |
+
if data.metrics_names[i] != 'R2':
|
379 |
+
axes[i].set_ylabel('$W/m^2$')
|
380 |
+
else:
|
381 |
+
axes[i].set_ylim(0,1)
|
382 |
+
|
383 |
+
axes[i].set_title(f'({letters[i]}) {data.metrics_names[i]}')
|
384 |
+
axes[i].set_xlabel('Output variable')
|
385 |
+
axes[i].set_xticklabels(plot_df_byvar[data.metrics_names[i]].index, \
|
386 |
+
rotation=0, ha='center')
|
387 |
+
|
388 |
axes[0].legend(columnspacing = .9,
|
389 |
labelspacing = .3,
|
390 |
handleheight = .07,
|
|
|
395 |
loc = 'upper right')
|
396 |
fig.set_size_inches(7,8)
|
397 |
fig.tight_layout()
|
398 |
+
|
399 |
st.pyplot(fig)
|
400 |
|
401 |
+
st.text('End')
|