Update app.py
Browse files
app.py
CHANGED
@@ -23,6 +23,8 @@ st.code('''from data_utils import *''',language='python')
|
|
23 |
|
24 |
|
25 |
st.header('**Step 2:** Instantiate class')
|
|
|
|
|
26 |
st.code('''#Change the path to your own
|
27 |
grid_info = xr.open_dataset('ClimSim_low-res_grid-info.nc')
|
28 |
input_mean = xr.open_dataset('input_mean.nc')
|
@@ -77,10 +79,10 @@ const_model = data.target_train.mean(axis = 0)
|
|
77 |
|
78 |
|
79 |
st.subheader('Train multiple linear regression model')
|
80 |
-
st.latex(r'''\beta=(X^{T}_{train} X_{train})^{-1} X^{T}_{train} y_{train}
|
81 |
-
|
82 |
-
where X_{train} and X_{input} correspond to the training data and the input data you would like to inference on, respectively.
|
83 |
-
X_{train} and X_{input} both have a column of ones concatenated to the feature space for the bias.''')
|
84 |
st.text('adding bias unit')
|
85 |
st.code('''X = data.input_train
|
86 |
bias_vector = np.ones((X.shape[0], 1))
|
|
|
23 |
|
24 |
|
25 |
st.header('**Step 2:** Instantiate class')
|
26 |
+
st.link_button("Go to original grid_info", "https://github.com/leap-stc/ClimSim/tree/main/grid_info",use_container_width=True)
|
27 |
+
st.link_button("Go to original input_mean input_max input_min output_scale", "https://github.com/leap-stc/ClimSim/tree/main/preprocessing/normalizations",use_container_width=True)
|
28 |
st.code('''#Change the path to your own
|
29 |
grid_info = xr.open_dataset('ClimSim_low-res_grid-info.nc')
|
30 |
input_mean = xr.open_dataset('input_mean.nc')
|
|
|
79 |
|
80 |
|
81 |
st.subheader('Train multiple linear regression model')
|
82 |
+
st.latex(r'''\beta=(X^{T}_{train} X_{train})^{-1} X^{T}_{train} y_{train} \\
|
83 |
+
&\hat{y}=X^{T}_{train} \beta\\
|
84 |
+
&text{where} X_{train} text{and} X_{input} text{correspond to the training data and the input data you would like to inference on, respectively.}\\
|
85 |
+
&X_{train} text{and} X_{input} text{both have a column of ones concatenated to the feature space for the bias.}''')
|
86 |
st.text('adding bias unit')
|
87 |
st.code('''X = data.input_train
|
88 |
bias_vector = np.ones((X.shape[0], 1))
|