puqi commited on
Commit
e9ce882
·
1 Parent(s): 8ac74fd

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -0
app.py CHANGED
@@ -69,6 +69,7 @@ data.target_val = data.load_npy_file('val_target_small.npy')
69
 
70
  st.header('**Step 4:** Train models')
71
  st.subheader('Train constant prediction model')
 
72
  st.code('''const_model = data.target_train.mean(axis = 0)''',language='python')
73
 
74
  const_model = data.target_train.mean(axis = 0)
@@ -76,6 +77,10 @@ const_model = data.target_train.mean(axis = 0)
76
 
77
 
78
  st.subheader('Train multiple linear regression model')
 
 
 
 
79
  st.text('adding bias unit')
80
  st.code('''X = data.input_train
81
  bias_vector = np.ones((X.shape[0], 1))
 
69
 
70
  st.header('**Step 4:** Train models')
71
  st.subheader('Train constant prediction model')
72
+ st.latex(r'''\hat{y}=E[y_{limit}]''')
73
  st.code('''const_model = data.target_train.mean(axis = 0)''',language='python')
74
 
75
  const_model = data.target_train.mean(axis = 0)
 
77
 
78
 
79
  st.subheader('Train multiple linear regression model')
80
+ st.latex(r'''\beta=(X^{T}_{train} X_{train})^{-1} X^{T}_{train} y_{train}
81
+ \hat{y}=X^{T}_{train} \beta
82
+ where X_{train} and X_{input} correspond to the training data and the input data you would like to inference on, respectively.
83
+ X_{train} and X_{input} both have a column of ones concatenated to the feature space for the bias.''')
84
  st.text('adding bias unit')
85
  st.code('''X = data.input_train
86
  bias_vector = np.ones((X.shape[0], 1))