File size: 9,158 Bytes
5526f12
6a85efc
5526f12
b204d6b
6a85efc
 
 
 
 
 
 
 
 
 
 
2bee048
fb3f6b2
6a85efc
fb3f6b2
0152128
 
b204d6b
5526f12
6a85efc
 
 
298c5bd
6a85efc
b204d6b
6a85efc
298c5bd
6a85efc
 
298c5bd
b204d6b
6a85efc
b204d6b
 
 
2bee048
fb3f6b2
6a85efc
fb3f6b2
298c5bd
6a85efc
b204d6b
6a85efc
 
b204d6b
 
6a85efc
b204d6b
a6df8ff
b204d6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a85efc
b204d6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5526f12
 
6a85efc
5526f12
298c5bd
6a85efc
 
 
b204d6b
 
 
 
 
 
 
 
 
 
6a85efc
 
b204d6b
 
6a85efc
 
 
b204d6b
6a85efc
b204d6b
 
 
5526f12
6a85efc
 
 
b189e5a
6a85efc
 
 
b204d6b
 
 
 
6a85efc
b204d6b
298c5bd
b204d6b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
##########################################
# Step 0: Import required libraries
##########################################
import streamlit as st  # For building the web application interface
from transformers import (
    pipeline,
    SpeechT5Processor,
    SpeechT5ForTextToSpeech,
    SpeechT5HifiGan,
    AutoModelForCausalLM,
    AutoTokenizer
)  # For emotion analysis, text-to-speech, and text generation
from datasets import load_dataset  # For loading datasets (e.g., speaker embeddings)
import torch  # For tensor operations
import soundfile as sf  # For saving audio as .wav files

##########################################
# Streamlit application title and input
##########################################
st.title("Just Comment")  # Set the app title for user interface
st.write("I'm listening to you, my friend")  # Add a brief app description
text = st.text_area("Enter your comment", "")  # Text area for user to input their comment or feedback

##########################################
# Step 1: Sentiment Analysis Function
##########################################
def analyze_dominant_emotion(user_review):
    """
    Analyze the dominant emotion in the user's comment using our fine-tuned text classification model.
    """
    emotion_classifier = pipeline(
        "text-classification", 
        model="Thea231/jhartmann_emotion_finetuning", 
        return_all_scores=True
    )  # Load our fine-tuned text classification model
    
    emotion_results = emotion_classifier(user_review)[0]  # Get the emotion classification scores for the input text
    dominant_emotion = max(emotion_results, key=lambda x: x['score'])  # Identify the emotion with the highest confidence
    return dominant_emotion  # Return the dominant emotion (label and score)

##########################################
# Step 2: Response Generation Function
##########################################
def response_gen(user_review):
    """
    Generate a concise and logical response based on the sentiment of the user's comment.
    """
    
    dominant_emotion = analyze_dominant_emotion(user_review)  # Get the dominant emotion of the user's comment
    emotion_label = dominant_emotion['label'].lower()  # Extract the emotion label in lowercase format
    
    # Define response templates for each emotion

    emotion_strategies = {
      "anger": {
          "prompt": (
              "Customer complaint: '{review}'\n\n"
              "As a customer service representative, craft a professional response that:\n"
              "- Begins with sincere apology and acknowledgment\n"
              "- Clearly explains solution process with concrete steps\n"
              "- Offers appropriate compensation/redemption\n"
              "- Keeps tone humble and solution-focused (3-4 sentences)\n\n"
              "Response:"
          )
      },
      "disgust": {
          "prompt": (
              "Customer quality concern: '{review}'\n\n"
              "As a customer service representative, craft a response that:\n"
              "- Immediately acknowledges the product issue\n"
              "- Explains quality control measures being taken\n"
              "- Provides clear return/replacement instructions\n"
              "- Offers goodwill gesture (3-4 sentences)\n\n"
              "Response:"
          )
      },
      "fear": {
          "prompt": (
              "Customer safety concern: '{review}'\n\n"
              "As a customer service representative, craft a reassuring response that:\n"
              "- Directly addresses the safety worries\n"
              "- References relevant certifications/standards\n"
              "- Offers dedicated support contact\n"
              "- Provides satisfaction guarantee (3-4 sentences)\n\n"
              "Response:"
          )
      },
      "joy": {
          "prompt": (
              "Customer review: '{review}'\n\n"
              "As a customer service representative, craft a concise response that:\n"
              "- Specifically acknowledges both positive and constructive feedback\n"
              "- Briefly mentions loyalty/referral programs\n"
              "- Ends with shopping invitation (3-4 sentences)\n\n"
              "Response:"
          )
      },
      "neutral": {
          "prompt": (
              "Customer feedback: '{review}'\n\n"
              "As a customer service representative, craft a balanced response that:\n"
              "- Provides additional relevant product information\n"
              "- Highlights key service features\n"
              "- Politely requests more detailed feedback\n"
              "- Maintains professional tone (3-4 sentences)\n\n"
              "Response:"
          )
      },
      "sadness": {
          "prompt": (
              "Customer disappointment: '{review}'\n\n"
              "As a customer service representative, craft an empathetic response that:\n"
              "- Shows genuine understanding of the issue\n"
              "- Proposes personalized recovery solution\n"
              "- Offers extended support options\n"
              "- Maintains positive outlook (3-4 sentences)\n\n"
              "Response:"
          )
      },
      "surprise": {
          "prompt": (
              "Customer enthusiastic feedback: '{review}'\n\n"
              "As a customer service representative, craft a response that:\n"
              "- Matches customer's positive energy appropriately\n"
              "- Highlights unexpected product benefits\n"
              "- Invites to user community/events\n"
              "- Maintains brand voice (3-4 sentences)\n\n"
              "Response:"
          )
      }

    # Select the appropriate prompt based on the user's emotion, or default to neutral
    prompt = emotion_prompts.get(
        emotion_label,
        f"Neutral feedback: '{user_review}'\n\nWrite a professional and concise response (50-200 words max).\n\nResponse:"
    )
    
    # Load the tokenizer and language model for text generation
    tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-0.5B") # Load tokenizer for processing text inputs
    model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen1.5-0.5B") # Load language model for response generation

    inputs = tokenizer(prompt, return_tensors="pt")  # Tokenize the input prompt
    outputs = model.generate(
        **inputs,
        max_new_tokens=300,  # Set the upper limit of tokens generated to ensure the response isn't too lengthy
        min_length=75,  # Set the minimum length of the generated response
        no_repeat_ngram_size=2,  # Avoid repeating phrases
        temperature=0.7  # Add slight randomness for natural-sounding responses
    )

    # Decode the generated response back into text
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    print(f" {response}")  # Debug print statement for generated text
    return response  # Return the generated response

##########################################
# Step 3: Text-to-Speech Conversion Function
##########################################
def sound_gen(response):
    """
    Convert the generated response to speech and save as a .wav file.
    """
    # Load the pre-trained TTS models for speech synthesis
    processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")  # Pre-trained processor for TTS
    model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")  # Pre-trained TTS model
    vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")  # Vocoder for generating waveforms

    # Load a neutral female voice embedding from a pre-trained dataset
    embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")  # Load speaker embeddings
    speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)  # Use a default speaker embedding

    # Process the input text and create a speech spectrogram
    inputs = processor(text=response, return_tensors="pt")
    spectrogram = model.generate_speech(inputs["input_ids"], speaker_embeddings)

    # Convert the spectrogram into an audio waveform using the vocoder
    with torch.no_grad():
        speech = vocoder(spectrogram)
    
    # Save the audio as a .wav file
    sf.write("customer_service_response.wav", speech.numpy(), samplerate=16000)
    # Play the generated audio in the Streamlit app
    st.audio("customer_service_response.wav")  # Embed an audio player in the web app


##########################################
# Main Function
##########################################
def main():
    """
    Main function to orchestrate the workflow of sentiment analysis, response generation, and text-to-speech.
    """
    if text:  # Check if the user has entered a comment
        response = response_gen(text)  # Generate a logical and concise response
        st.write(f"I wanna tell you that: {response}")  # Display the generated response in the Streamlit app
        sound_gen(response)  # Convert the text response to speech and make it available for playback

# Run the main function when the script is executed
if __name__ == "__main__":
    main()