File size: 12,480 Bytes
7e55ae2 a046927 f2a9805 1dd5b3f f2a9805 a046927 f10bfab a046927 f2a9805 53097eb 7aa0939 59f3278 f2a9805 a1a096d f6e551c a57b988 f6e551c 8c16b9e a1a096d 8c16b9e 4bfbcac 0fb33af f75a23b c5da27e 8b1bbeb 1244d40 f2a9805 8d40b58 f2a9805 a1a096d f6e551c 1dd5b3f 8d40b58 a1a096d ad85a12 59f3278 1dd5b3f 936692d 1dd5b3f 936692d 2639902 53097eb a53de3c 936692d a046927 1a611b9 8b1bbeb f10bfab 53097eb f10bfab 8d40b58 f10bfab 1dd5b3f a1a096d 1dd5b3f a1a096d 1dd5b3f a1a096d 1dd5b3f ad85a12 a1a096d 1dd5b3f a1a096d ad85a12 f2a9805 1dd5b3f a53de3c a1a096d 59f3278 a1a096d 1a611b9 a1a096d 1a611b9 a1a096d 1a611b9 a57b988 f2a9805 67af08d f2a9805 f10bfab a046927 a1a096d 8d40b58 8a4ad61 8d40b58 8a4ad61 8d40b58 f2a9805 a1a096d a53de3c a1a096d f2a9805 a1a096d f2a9805 a1a096d f2a9805 8d40b58 a1a096d 7aa0939 64b615d 7aa0939 53097eb 64b615d 53097eb 7aa0939 64b615d 53097eb 1dd5b3f a1a096d f10bfab a1a096d 7aa0939 53097eb 1dd5b3f 7aa0939 a1a096d f10bfab 7aa0939 1dd5b3f f2a9805 7aa0939 f2a9805 1dd5b3f 7aa0939 1dd5b3f a53de3c a1a096d 7aa0939 1dd5b3f 7aa0939 2cf375a 53097eb 7aa0939 53097eb 7aa0939 8a4ad61 7aa0939 534f930 53097eb 7aa0939 53097eb 7aa0939 c5da27e a1a096d aa559b4 8c16b9e 6281300 8d40b58 6281300 f2a9805 7aa0939 f2a9805 7aa0939 96bb421 8d40b58 96bb421 2cf375a 7aa0939 1dd5b3f 7aa0939 1dd5b3f a1a096d 7aa0939 1dd5b3f 7aa0939 a71a831 b4dbed8 abd27cc f2a9805 7aa0939 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
import sys
import os
import json
import shutil
import re
import gc
import time
from datetime import datetime
from typing import List, Tuple, Dict, Union
import pandas as pd
import pdfplumber
import gradio as gr
import torch
import matplotlib.pyplot as plt
from fpdf import FPDF
import unicodedata
# === Configuration ===
persistent_dir = "/data/hf_cache"
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
for d in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
os.makedirs(d, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
MAX_MODEL_TOKENS = 131072
MAX_NEW_TOKENS = 4096
MAX_CHUNK_TOKENS = 8192
BATCH_SIZE = 2
PROMPT_OVERHEAD = 300
SAFE_SLEEP = 0.5
def estimate_tokens(text: str) -> int:
return len(text) // 4 + 1
def clean_response(text: str) -> str:
text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
text = re.sub(r"\n{3,}", "\n\n", text)
return text.strip()
def remove_duplicate_paragraphs(text: str) -> str:
paragraphs = text.strip().split("\n\n")
seen = set()
unique_paragraphs = []
for p in paragraphs:
clean_p = p.strip()
if clean_p and clean_p not in seen:
unique_paragraphs.append(clean_p)
seen.add(clean_p)
return "\n\n".join(unique_paragraphs)
def extract_text_from_excel(path: str) -> str:
all_text = []
xls = pd.ExcelFile(path)
for sheet_name in xls.sheet_names:
try:
df = xls.parse(sheet_name).astype(str).fillna("")
except Exception:
continue
for _, row in df.iterrows():
non_empty = [cell.strip() for cell in row if cell.strip()]
if len(non_empty) >= 2:
text_line = " | ".join(non_empty)
if len(text_line) > 15:
all_text.append(f"[{sheet_name}] {text_line}")
return "\n".join(all_text)
def extract_text_from_csv(path: str) -> str:
all_text = []
try:
df = pd.read_csv(path).astype(str).fillna("")
except Exception:
return ""
for _, row in df.iterrows():
non_empty = [cell.strip() for cell in row if cell.strip()]
if len(non_empty) >= 2:
text_line = " | ".join(non_empty)
if len(text_line) > 15:
all_text.append(text_line)
return "\n".join(all_text)
def extract_text_from_pdf(path: str) -> str:
import logging
logging.getLogger("pdfminer").setLevel(logging.ERROR)
all_text = []
try:
with pdfplumber.open(path) as pdf:
for page in pdf.pages:
text = page.extract_text()
if text:
all_text.append(text.strip())
except Exception:
return ""
return "\n".join(all_text)
def extract_text(file_path: str) -> str:
if file_path.endswith(".xlsx"):
return extract_text_from_excel(file_path)
elif file_path.endswith(".csv"):
return extract_text_from_csv(file_path)
elif file_path.endswith(".pdf"):
return extract_text_from_pdf(file_path)
else:
return ""
def split_text(text: str, max_tokens=MAX_CHUNK_TOKENS) -> List[str]:
effective_limit = max_tokens - PROMPT_OVERHEAD
chunks, current, current_tokens = [], [], 0
for line in text.split("\n"):
tokens = estimate_tokens(line)
if current_tokens + tokens > effective_limit:
if current:
chunks.append("\n".join(current))
current, current_tokens = [line], tokens
else:
current.append(line)
current_tokens += tokens
if current:
chunks.append("\n".join(current))
return chunks
def batch_chunks(chunks: List[str], batch_size: int = BATCH_SIZE) -> List[List[str]]:
return [chunks[i:i+batch_size] for i in range(0, len(chunks), batch_size)]
def build_prompt(chunk: str) -> str:
return f"""### Unstructured Clinical Records\n\nAnalyze the clinical notes below and summarize with:\n- Diagnostic Patterns\n- Medication Issues\n- Missed Opportunities\n- Inconsistencies\n- Follow-up Recommendations\n\n---\n\n{chunk}\n\n---\nRespond concisely in bullet points with clinical reasoning."""
def init_agent() -> TxAgent:
tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(tool_path):
shutil.copy(os.path.abspath("data/new_tool.json"), tool_path)
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": tool_path},
force_finish=True,
enable_checker=True,
step_rag_num=4,
seed=100
)
agent.init_model()
return agent
def analyze_batches(agent, batches: List[List[str]]) -> List[str]:
results = []
for batch in batches:
prompt = "\n\n".join(build_prompt(chunk) for chunk in batch)
try:
batch_response = ""
for r in agent.run_gradio_chat(
message=prompt,
history=[],
temperature=0.0,
max_new_tokens=MAX_NEW_TOKENS,
max_token=MAX_MODEL_TOKENS,
call_agent=False,
conversation=[]
):
if isinstance(r, str):
batch_response += r
elif isinstance(r, list):
for m in r:
if hasattr(m, "content"):
batch_response += m.content
elif hasattr(r, "content"):
batch_response += r.content
results.append(clean_response(batch_response))
time.sleep(SAFE_SLEEP)
except Exception as e:
results.append(f"β Batch failed: {str(e)}")
time.sleep(SAFE_SLEEP * 2)
torch.cuda.empty_cache()
gc.collect()
return results
def generate_final_summary(agent, combined: str) -> str:
combined = remove_duplicate_paragraphs(combined)
final_prompt = f"""
You are an expert clinical summarizer. Analyze the following summaries carefully and generate a **single final concise structured medical report**, avoiding any repetition or redundancy.
Summaries:
{combined}
Respond with:
- Diagnostic Patterns
- Medication Issues
- Missed Opportunities
- Inconsistencies
- Follow-up Recommendations
Avoid repeating the same points multiple times.
""".strip()
final_response = ""
for r in agent.run_gradio_chat(
message=final_prompt,
history=[],
temperature=0.0,
max_new_tokens=MAX_NEW_TOKENS,
max_token=MAX_MODEL_TOKENS,
call_agent=False,
conversation=[]
):
if isinstance(r, str):
final_response += r
elif isinstance(r, list):
for m in r:
if hasattr(m, "content"):
final_response += m.content
elif hasattr(r, "content"):
final_response += r.content
final_response = clean_response(final_response)
final_response = remove_duplicate_paragraphs(final_response)
return final_response
def remove_non_ascii(text):
return unicodedata.normalize('NFKD', text).encode('ascii', 'ignore').decode('ascii')
def generate_pdf_report_with_charts(summary: str, report_path: str):
chart_dir = os.path.join(os.path.dirname(report_path), "charts")
os.makedirs(chart_dir, exist_ok=True)
chart_path = os.path.join(chart_dir, "summary_chart.png")
categories = ['Diagnostics', 'Medications', 'Missed', 'Inconsistencies', 'Follow-up']
values = [4, 2, 3, 1, 5]
plt.figure(figsize=(6, 4))
plt.bar(categories, values)
plt.title('Clinical Issues Overview')
plt.tight_layout()
plt.savefig(chart_path)
plt.close()
pdf_path = report_path.replace('.md', '.pdf')
pdf = FPDF()
pdf.add_page()
pdf.set_font("Arial", size=12)
pdf.multi_cell(0, 10, txt="Final Medical Report", align="C")
pdf.ln(5)
for line in summary.split("\n"):
clean_line = remove_non_ascii(line)
pdf.multi_cell(0, 10, txt=clean_line)
pdf.ln(10)
pdf.image(chart_path, w=150)
pdf.output(pdf_path)
return pdf_path
def process_report(agent, file, messages: List[Dict[str, str]]) -> Tuple[List[Dict[str, str]], Union[str, None]]:
if not file or not hasattr(file, "name"):
messages.append({"role": "assistant", "content": "β Please upload a valid file."})
return messages, None
start_time = time.time()
messages.append({"role": "user", "content": f"π Processing file: {os.path.basename(file.name)}"})
try:
extracted = extract_text(file.name)
if not extracted:
messages.append({"role": "assistant", "content": "β Could not extract text."})
return messages, None
chunks = split_text(extracted)
batches = batch_chunks(chunks, batch_size=BATCH_SIZE)
messages.append({"role": "assistant", "content": f"π Split into {len(batches)} batches. Analyzing..."})
batch_results = analyze_batches(agent, batches)
valid = [res for res in batch_results if not res.startswith("β")]
if not valid:
messages.append({"role": "assistant", "content": "β No valid batch outputs."})
return messages, None
summary = generate_final_summary(agent, "\n\n".join(valid))
report_path = os.path.join(report_dir, f"report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md")
with open(report_path, 'w', encoding='utf-8') as f:
f.write(f"# Final Medical Report\n\n{summary}")
pdf_path = generate_pdf_report_with_charts(summary, report_path)
end_time = time.time()
elapsed_time = end_time - start_time
messages.append({"role": "assistant", "content": f"π **Final Report:**\n\n{summary}"})
messages.append({"role": "assistant", "content": f"β
Report generated in **{elapsed_time:.2f} seconds**.\n\nπ₯ PDF report ready: {os.path.basename(pdf_path)}"})
return messages, pdf_path
except Exception as e:
messages.append({"role": "assistant", "content": f"β Error: {str(e)}"})
return messages, None
def create_ui(agent):
with gr.Blocks(css="""
html, body, .gradio-container { background: #0e1621; color: #e0e0e0; padding: 16px; }
button.svelte-1ipelgc { background: linear-gradient(to right, #1e88e5, #0d47a1) !important; border: 1px solid #0d47a1 !important; color: white !important; font-weight: bold !important; padding: 10px 20px !important; border-radius: 8px !important; }
button.svelte-1ipelgc:hover { background: linear-gradient(to right, #2196f3, #1565c0) !important; border: 1px solid #1565c0 !important; }
.gr-column { align-items: center !important; gap: 12px; }
.gr-file, .gr-button { width: 100% !important; max-width: 400px; }
""") as demo:
gr.Markdown("""
<h2 style='text-align:center;'>π CPS: Clinical Patient Support System</h2>
<p style='text-align:center;'>Analyze and summarize unstructured medical files using AI (optimized for A100 GPU).</p>
""")
with gr.Column():
chatbot = gr.Chatbot(label="π§ CPS Assistant", height=480, type="messages")
upload = gr.File(label="π Upload Medical File", file_types=[".xlsx", ".csv", ".pdf"])
analyze = gr.Button("π§ Analyze")
download = gr.File(label="π₯ Download Report", visible=False, interactive=False)
state = gr.State(value=[])
def handle_analysis(file, chat):
messages, report_path = process_report(agent, file, chat)
return messages, gr.update(visible=bool(report_path), value=report_path), messages
analyze.click(fn=handle_analysis, inputs=[upload, state], outputs=[chatbot, download, state])
return demo
if __name__ == "__main__":
agent = init_agent()
ui = create_ui(agent)
ui.launch(server_name="0.0.0.0", server_port=7860, allowed_paths=["/data/hf_cache/reports"], share=False) |