Update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,17 @@
|
|
1 |
-
import sys
|
|
|
2 |
import pandas as pd
|
3 |
-
|
4 |
-
from typing import List, Tuple, Dict, Union
|
5 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
from concurrent.futures import ThreadPoolExecutor
|
7 |
|
8 |
-
#
|
9 |
-
MAX_MODEL_TOKENS = 131072
|
10 |
-
MAX_NEW_TOKENS = 4096
|
11 |
-
MAX_CHUNK_TOKENS = 8192
|
12 |
-
PROMPT_OVERHEAD = 300
|
13 |
-
BATCH_SIZE = 2 # NEW: batch 2 prompts together for faster processing
|
14 |
-
|
15 |
-
# Paths
|
16 |
persistent_dir = "/data/hf_cache"
|
17 |
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
|
18 |
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
|
@@ -25,59 +24,66 @@ for d in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
|
|
25 |
os.environ["HF_HOME"] = model_cache_dir
|
26 |
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
|
27 |
|
|
|
28 |
current_dir = os.path.dirname(os.path.abspath(__file__))
|
29 |
src_path = os.path.abspath(os.path.join(current_dir, "src"))
|
30 |
sys.path.insert(0, src_path)
|
31 |
|
32 |
from txagent.txagent import TxAgent
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
def estimate_tokens(text: str) -> int:
|
35 |
return len(text) // 4 + 1
|
36 |
|
37 |
-
def clean_response(text: str) -> str:
|
38 |
-
text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
|
39 |
-
text = re.sub(r"\n{3,}", "\n\n", text)
|
40 |
-
text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
|
41 |
-
return text.strip()
|
42 |
-
|
43 |
def extract_text_from_excel(path: str) -> str:
|
44 |
all_text = []
|
45 |
xls = pd.ExcelFile(path)
|
46 |
-
for
|
47 |
try:
|
48 |
-
df = xls.parse(
|
49 |
except Exception:
|
50 |
continue
|
51 |
-
for
|
52 |
non_empty = [cell.strip() for cell in row if cell.strip()]
|
53 |
if len(non_empty) >= 2:
|
54 |
-
|
55 |
-
if len(
|
56 |
-
all_text.append(f"[{
|
57 |
return "\n".join(all_text)
|
58 |
|
59 |
-
def split_text(text: str, max_tokens=MAX_CHUNK_TOKENS) -> List[str]:
|
60 |
effective_limit = max_tokens - PROMPT_OVERHEAD
|
61 |
-
chunks, current,
|
62 |
for line in text.split("\n"):
|
63 |
-
|
64 |
-
if
|
65 |
if current:
|
66 |
chunks.append("\n".join(current))
|
67 |
-
current,
|
68 |
else:
|
69 |
current.append(line)
|
70 |
-
|
71 |
if current:
|
72 |
chunks.append("\n".join(current))
|
73 |
return chunks
|
74 |
|
75 |
-
def batch_chunks(chunks: List[str], batch_size: int =
|
76 |
-
return [chunks[i:i+batch_size] for i in range(0, len(chunks), batch_size)]
|
77 |
|
78 |
def build_prompt(chunk: str) -> str:
|
79 |
return f"""### Unstructured Clinical Records\n\nAnalyze the clinical notes below and summarize with:\n- Diagnostic Patterns\n- Medication Issues\n- Missed Opportunities\n- Inconsistencies\n- Follow-up Recommendations\n\n---\n\n{chunk}\n\n---\nRespond concisely in bullet points with clinical reasoning."""
|
80 |
|
|
|
|
|
|
|
|
|
|
|
81 |
def init_agent() -> TxAgent:
|
82 |
tool_path = os.path.join(tool_cache_dir, "new_tool.json")
|
83 |
if not os.path.exists(tool_path):
|
@@ -97,9 +103,9 @@ def init_agent() -> TxAgent:
|
|
97 |
def analyze_batches(agent, batches: List[List[str]]) -> List[str]:
|
98 |
results = []
|
99 |
for batch in batches:
|
100 |
-
prompt = "\n\n".join(build_prompt(
|
101 |
-
response = ""
|
102 |
try:
|
|
|
103 |
for r in agent.run_gradio_chat(
|
104 |
message=prompt,
|
105 |
history=[],
|
@@ -119,14 +125,14 @@ def analyze_batches(agent, batches: List[List[str]]) -> List[str]:
|
|
119 |
response += r.content
|
120 |
results.append(clean_response(response))
|
121 |
except Exception as e:
|
122 |
-
results.append(f"β Error
|
123 |
-
|
124 |
-
|
125 |
return results
|
126 |
|
127 |
def generate_final_summary(agent, combined: str) -> str:
|
128 |
-
final_prompt = f"""
|
129 |
-
|
130 |
for r in agent.run_gradio_chat(
|
131 |
message=final_prompt,
|
132 |
history=[],
|
@@ -137,41 +143,43 @@ def generate_final_summary(agent, combined: str) -> str:
|
|
137 |
conversation=[]
|
138 |
):
|
139 |
if isinstance(r, str):
|
140 |
-
|
141 |
elif isinstance(r, list):
|
142 |
for m in r:
|
143 |
if hasattr(m, "content"):
|
144 |
-
|
145 |
elif hasattr(r, "content"):
|
146 |
-
|
147 |
-
return clean_response(
|
148 |
|
149 |
-
def
|
150 |
if not file or not hasattr(file, "name"):
|
151 |
messages.append({"role": "assistant", "content": "β Please upload a valid Excel file."})
|
152 |
return messages, None
|
153 |
|
154 |
-
messages.append({"role": "user", "content": f"π Processing file: {
|
155 |
try:
|
156 |
-
|
157 |
-
chunks = split_text(
|
158 |
-
batches = batch_chunks(chunks
|
159 |
messages.append({"role": "assistant", "content": f"π Split into {len(batches)} batches. Analyzing..."})
|
160 |
|
161 |
-
|
162 |
-
|
163 |
|
164 |
-
if not
|
165 |
messages.append({"role": "assistant", "content": "β No valid batch outputs."})
|
166 |
return messages, None
|
167 |
|
168 |
-
summary = generate_final_summary(agent, "\n\n".join(
|
|
|
169 |
report_path = os.path.join(report_dir, f"report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md")
|
170 |
-
with open(report_path,
|
171 |
f.write(f"# π§ Final Medical Report\n\n{summary}")
|
172 |
|
173 |
messages.append({"role": "assistant", "content": f"π Final Report:\n\n{summary}"})
|
174 |
-
messages.append({"role": "assistant", "content": f"β
|
|
|
175 |
return messages, report_path
|
176 |
|
177 |
except Exception as e:
|
@@ -180,84 +188,27 @@ def process_report(agent, file, messages: List[Dict[str, str]]) -> Tuple[List[Di
|
|
180 |
|
181 |
def create_ui(agent):
|
182 |
with gr.Blocks(css="""
|
183 |
-
html, body
|
184 |
-
|
185 |
-
|
186 |
-
font-family: 'Inter', sans-serif;
|
187 |
-
padding: 0;
|
188 |
-
margin: 0;
|
189 |
-
}
|
190 |
-
h2, h3, h4 {
|
191 |
-
color: #89b4fa;
|
192 |
-
font-weight: 600;
|
193 |
-
}
|
194 |
-
button.gr-button-primary {
|
195 |
-
background-color: #007bff !important;
|
196 |
-
color: white !important;
|
197 |
-
font-weight: bold;
|
198 |
-
border-radius: 8px !important;
|
199 |
-
padding: 0.65em 1.2em !important;
|
200 |
-
font-size: 16px !important;
|
201 |
-
border: none;
|
202 |
-
}
|
203 |
-
button.gr-button-primary:hover {
|
204 |
-
background-color: #0056b3 !important;
|
205 |
-
}
|
206 |
-
.gr-chatbot, .gr-markdown, .gr-file-upload {
|
207 |
-
border-radius: 16px;
|
208 |
-
background-color: #1b2533;
|
209 |
-
border: 1px solid #2a2f45;
|
210 |
-
padding: 10px;
|
211 |
-
}
|
212 |
-
.gr-chatbot .message {
|
213 |
-
font-size: 16px;
|
214 |
-
padding: 12px 16px;
|
215 |
-
border-radius: 18px;
|
216 |
-
margin: 8px 0;
|
217 |
-
max-width: 80%;
|
218 |
-
word-break: break-word;
|
219 |
-
white-space: pre-wrap;
|
220 |
-
}
|
221 |
-
.gr-chatbot .message.user {
|
222 |
-
background-color: #334155;
|
223 |
-
align-self: flex-end;
|
224 |
-
margin-left: auto;
|
225 |
-
}
|
226 |
-
.gr-chatbot .message.assistant {
|
227 |
-
background-color: #1e293b;
|
228 |
-
align-self: flex-start;
|
229 |
-
margin-right: auto;
|
230 |
-
}
|
231 |
-
.gr-file-upload .file-name {
|
232 |
-
font-size: 14px;
|
233 |
-
color: #89b4fa;
|
234 |
-
}
|
235 |
""") as demo:
|
236 |
-
gr.Markdown("""
|
237 |
-
|
238 |
-
|
239 |
-
""
|
240 |
-
|
241 |
-
chatbot = gr.Chatbot(label="CPS Assistant", height=700, type="messages")
|
242 |
-
upload = gr.File(label="Upload Medical File", file_types=[".xlsx"])
|
243 |
-
analyze = gr.Button("π§ Analyze", variant="primary")
|
244 |
-
download = gr.File(label="Download Report", visible=False, interactive=False)
|
245 |
|
246 |
-
state = gr.State(
|
247 |
|
248 |
-
def
|
249 |
-
messages, report_path =
|
250 |
return messages, gr.update(visible=bool(report_path), value=report_path), messages
|
251 |
|
252 |
-
|
253 |
|
254 |
return demo
|
255 |
|
256 |
if __name__ == "__main__":
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
ui.launch(server_name="0.0.0.0", server_port=7860, allowed_paths=["/data/hf_cache/reports"], share=False)
|
261 |
-
except Exception as err:
|
262 |
-
print(f"Startup failed: {err}")
|
263 |
-
sys.exit(1)
|
|
|
1 |
+
import sys
|
2 |
+
import os
|
3 |
import pandas as pd
|
4 |
+
import json
|
|
|
5 |
import gradio as gr
|
6 |
+
from datetime import datetime
|
7 |
+
import shutil
|
8 |
+
import gc
|
9 |
+
import re
|
10 |
+
import torch
|
11 |
+
from typing import List, Tuple, Dict
|
12 |
from concurrent.futures import ThreadPoolExecutor
|
13 |
|
14 |
+
# Directories
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
persistent_dir = "/data/hf_cache"
|
16 |
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
|
17 |
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
|
|
|
24 |
os.environ["HF_HOME"] = model_cache_dir
|
25 |
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
|
26 |
|
27 |
+
# Paths
|
28 |
current_dir = os.path.dirname(os.path.abspath(__file__))
|
29 |
src_path = os.path.abspath(os.path.join(current_dir, "src"))
|
30 |
sys.path.insert(0, src_path)
|
31 |
|
32 |
from txagent.txagent import TxAgent
|
33 |
|
34 |
+
# Constants
|
35 |
+
MAX_MODEL_TOKENS = 131072
|
36 |
+
MAX_NEW_TOKENS = 4096
|
37 |
+
MAX_CHUNK_TOKENS = 8192
|
38 |
+
PROMPT_OVERHEAD = 300
|
39 |
+
BATCH_SIZE = 2
|
40 |
+
|
41 |
def estimate_tokens(text: str) -> int:
|
42 |
return len(text) // 4 + 1
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
def extract_text_from_excel(path: str) -> str:
|
45 |
all_text = []
|
46 |
xls = pd.ExcelFile(path)
|
47 |
+
for sheet in xls.sheet_names:
|
48 |
try:
|
49 |
+
df = xls.parse(sheet).astype(str).fillna("")
|
50 |
except Exception:
|
51 |
continue
|
52 |
+
for _, row in df.iterrows():
|
53 |
non_empty = [cell.strip() for cell in row if cell.strip()]
|
54 |
if len(non_empty) >= 2:
|
55 |
+
line = " | ".join(non_empty)
|
56 |
+
if len(line) > 15:
|
57 |
+
all_text.append(f"[{sheet}] {line}")
|
58 |
return "\n".join(all_text)
|
59 |
|
60 |
+
def split_text(text: str, max_tokens: int = MAX_CHUNK_TOKENS) -> List[str]:
|
61 |
effective_limit = max_tokens - PROMPT_OVERHEAD
|
62 |
+
chunks, current, tokens = [], [], 0
|
63 |
for line in text.split("\n"):
|
64 |
+
tks = estimate_tokens(line)
|
65 |
+
if tokens + tks > effective_limit:
|
66 |
if current:
|
67 |
chunks.append("\n".join(current))
|
68 |
+
current, tokens = [line], tks
|
69 |
else:
|
70 |
current.append(line)
|
71 |
+
tokens += tks
|
72 |
if current:
|
73 |
chunks.append("\n".join(current))
|
74 |
return chunks
|
75 |
|
76 |
+
def batch_chunks(chunks: List[str], batch_size: int = BATCH_SIZE) -> List[List[str]]:
|
77 |
+
return [chunks[i:i + batch_size] for i in range(0, len(chunks), batch_size)]
|
78 |
|
79 |
def build_prompt(chunk: str) -> str:
|
80 |
return f"""### Unstructured Clinical Records\n\nAnalyze the clinical notes below and summarize with:\n- Diagnostic Patterns\n- Medication Issues\n- Missed Opportunities\n- Inconsistencies\n- Follow-up Recommendations\n\n---\n\n{chunk}\n\n---\nRespond concisely in bullet points with clinical reasoning."""
|
81 |
|
82 |
+
def clean_response(text: str) -> str:
|
83 |
+
text = re.sub(r"\[.*?\]", "", text, flags=re.DOTALL)
|
84 |
+
text = re.sub(r"\n{3,}", "\n\n", text)
|
85 |
+
return text.strip()
|
86 |
+
|
87 |
def init_agent() -> TxAgent:
|
88 |
tool_path = os.path.join(tool_cache_dir, "new_tool.json")
|
89 |
if not os.path.exists(tool_path):
|
|
|
103 |
def analyze_batches(agent, batches: List[List[str]]) -> List[str]:
|
104 |
results = []
|
105 |
for batch in batches:
|
106 |
+
prompt = "\n\n".join(build_prompt(c) for c in batch)
|
|
|
107 |
try:
|
108 |
+
response = ""
|
109 |
for r in agent.run_gradio_chat(
|
110 |
message=prompt,
|
111 |
history=[],
|
|
|
125 |
response += r.content
|
126 |
results.append(clean_response(response))
|
127 |
except Exception as e:
|
128 |
+
results.append(f"β Error: {str(e)}")
|
129 |
+
torch.cuda.empty_cache()
|
130 |
+
gc.collect()
|
131 |
return results
|
132 |
|
133 |
def generate_final_summary(agent, combined: str) -> str:
|
134 |
+
final_prompt = f"""Summarize the following clinical summaries into a final medical report:\n\n{combined}"""
|
135 |
+
response = ""
|
136 |
for r in agent.run_gradio_chat(
|
137 |
message=final_prompt,
|
138 |
history=[],
|
|
|
143 |
conversation=[]
|
144 |
):
|
145 |
if isinstance(r, str):
|
146 |
+
response += r
|
147 |
elif isinstance(r, list):
|
148 |
for m in r:
|
149 |
if hasattr(m, "content"):
|
150 |
+
response += m.content
|
151 |
elif hasattr(r, "content"):
|
152 |
+
response += r.content
|
153 |
+
return clean_response(response)
|
154 |
|
155 |
+
def process_file(agent, file, messages: List[Dict[str, str]]) -> Tuple[List[Dict[str, str]], str]:
|
156 |
if not file or not hasattr(file, "name"):
|
157 |
messages.append({"role": "assistant", "content": "β Please upload a valid Excel file."})
|
158 |
return messages, None
|
159 |
|
160 |
+
messages.append({"role": "user", "content": f"π Processing file: {file.name}"})
|
161 |
try:
|
162 |
+
extracted_text = extract_text_from_excel(file.name)
|
163 |
+
chunks = split_text(extracted_text)
|
164 |
+
batches = batch_chunks(chunks)
|
165 |
messages.append({"role": "assistant", "content": f"π Split into {len(batches)} batches. Analyzing..."})
|
166 |
|
167 |
+
batch_outputs = analyze_batches(agent, batches)
|
168 |
+
valid_outputs = [res for res in batch_outputs if not res.startswith("β")]
|
169 |
|
170 |
+
if not valid_outputs:
|
171 |
messages.append({"role": "assistant", "content": "β No valid batch outputs."})
|
172 |
return messages, None
|
173 |
|
174 |
+
summary = generate_final_summary(agent, "\n\n".join(valid_outputs))
|
175 |
+
|
176 |
report_path = os.path.join(report_dir, f"report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md")
|
177 |
+
with open(report_path, "w", encoding="utf-8") as f:
|
178 |
f.write(f"# π§ Final Medical Report\n\n{summary}")
|
179 |
|
180 |
messages.append({"role": "assistant", "content": f"π Final Report:\n\n{summary}"})
|
181 |
+
messages.append({"role": "assistant", "content": f"β
Saved report: {os.path.basename(report_path)}"})
|
182 |
+
|
183 |
return messages, report_path
|
184 |
|
185 |
except Exception as e:
|
|
|
188 |
|
189 |
def create_ui(agent):
|
190 |
with gr.Blocks(css="""
|
191 |
+
html, body { background-color: #0e1621; color: #e0e0e0; }
|
192 |
+
button { background: #007bff; color: white; border-radius: 8px; padding: 8px 16px; }
|
193 |
+
.gr-chatbot { background: #1b2533; border: 1px solid #2a2f45; border-radius: 16px; padding: 10px; }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
""") as demo:
|
195 |
+
gr.Markdown("""## π§ CPS: Clinical Patient Support Assistant""")
|
196 |
+
chatbot = gr.Chatbot(label="CPS Assistant", height=700, type="messages")
|
197 |
+
upload = gr.File(label="Upload Excel File", file_types=[".xlsx"])
|
198 |
+
analyze_btn = gr.Button("π§ Analyze File")
|
199 |
+
download = gr.File(label="Download Report", visible=False)
|
|
|
|
|
|
|
|
|
200 |
|
201 |
+
state = gr.State([])
|
202 |
|
203 |
+
def handle_analyze(file, chat_state):
|
204 |
+
messages, report_path = process_file(agent, file, chat_state)
|
205 |
return messages, gr.update(visible=bool(report_path), value=report_path), messages
|
206 |
|
207 |
+
analyze_btn.click(fn=handle_analyze, inputs=[upload, state], outputs=[chatbot, download, state])
|
208 |
|
209 |
return demo
|
210 |
|
211 |
if __name__ == "__main__":
|
212 |
+
agent = init_agent()
|
213 |
+
ui = create_ui(agent)
|
214 |
+
ui.launch(server_name="0.0.0.0", server_port=7860, allowed_paths=["/data/hf_cache/reports"], share=False)
|
|
|
|
|
|
|
|