Update src/txagent/txagent.py
Browse files- src/txagent/txagent.py +505 -134
src/txagent/txagent.py
CHANGED
@@ -14,33 +14,11 @@ from .toolrag import ToolRAGModel
|
|
14 |
import torch
|
15 |
import logging
|
16 |
|
17 |
-
# Configure logging
|
18 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
19 |
logger = logging.getLogger("TxAgent")
|
20 |
|
21 |
from .utils import NoRepeatSentenceProcessor, ReasoningTraceChecker, tool_result_format
|
22 |
-
import re
|
23 |
-
|
24 |
-
def extract_function_call_json(text: str, return_message: bool = False):
|
25 |
-
"""
|
26 |
-
Simple extraction of function call JSON from model output text.
|
27 |
-
"""
|
28 |
-
match = re.search(r"\[TOOL_CALLS\](.*?)$", text, re.DOTALL)
|
29 |
-
if not match:
|
30 |
-
return [], text
|
31 |
-
|
32 |
-
try:
|
33 |
-
json_block = match.group(1).strip()
|
34 |
-
func_calls = json.loads(json_block)
|
35 |
-
if isinstance(func_calls, dict):
|
36 |
-
func_calls = [func_calls]
|
37 |
-
message = text.split("[TOOL_CALLS]")[0].strip()
|
38 |
-
if return_message:
|
39 |
-
return func_calls, message
|
40 |
-
return func_calls
|
41 |
-
except Exception as e:
|
42 |
-
logger.error(f"Error parsing function call JSON: {e}")
|
43 |
-
return [], text
|
44 |
|
45 |
class TxAgent:
|
46 |
def __init__(self, model_name,
|
@@ -96,20 +74,19 @@ class TxAgent:
|
|
96 |
return f"The model {model_name} is already loaded."
|
97 |
self.model_name = model_name
|
98 |
|
99 |
-
# OPTIMIZED: maximize batching for big GPU
|
100 |
self.model = LLM(
|
101 |
model=self.model_name,
|
102 |
dtype="float16",
|
103 |
max_model_len=131072,
|
104 |
-
max_num_batched_tokens=
|
105 |
-
gpu_memory_utilization=0.
|
106 |
trust_remote_code=True
|
107 |
)
|
108 |
self.chat_template = Template(self.model.get_tokenizer().chat_template)
|
109 |
self.tokenizer = self.model.get_tokenizer()
|
110 |
logger.info(
|
111 |
"Model %s loaded with max_model_len=%d, max_num_batched_tokens=%d, gpu_memory_utilization=%.2f",
|
112 |
-
self.model_name, 131072,
|
113 |
)
|
114 |
return f"Model {model_name} loaded successfully."
|
115 |
|
@@ -129,6 +106,7 @@ class TxAgent:
|
|
129 |
self.rag_model.load_tool_desc_embedding(self.tooluniverse)
|
130 |
self.rag_model.save_embeddings(cache_path)
|
131 |
logger.debug("Tool description embeddings loaded")
|
|
|
132 |
def rag_infer(self, query, top_k=5):
|
133 |
return self.rag_model.rag_infer(query, top_k)
|
134 |
|
@@ -158,6 +136,29 @@ class TxAgent:
|
|
158 |
logger.debug("Conversation initialized with %d messages", len(conversation))
|
159 |
return conversation
|
160 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
def add_special_tools(self, tools, call_agent=False):
|
162 |
if self.enable_finish:
|
163 |
tools.append(self.tooluniverse.get_one_tool_by_one_name('Finish', return_prompt=True))
|
@@ -167,6 +168,11 @@ class TxAgent:
|
|
167 |
logger.debug("CallAgent tool added")
|
168 |
return tools
|
169 |
|
|
|
|
|
|
|
|
|
|
|
170 |
def set_system_prompt(self, conversation, sys_prompt):
|
171 |
if not conversation:
|
172 |
conversation.append({"role": "system", "content": sys_prompt})
|
@@ -174,12 +180,246 @@ class TxAgent:
|
|
174 |
conversation[0] = {"role": "system", "content": sys_prompt}
|
175 |
return conversation
|
176 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
def build_logits_processor(self, messages, llm):
|
178 |
logger.warning("Logits processor disabled due to vLLM V1 limitation")
|
179 |
return None
|
180 |
|
181 |
-
def llm_infer(self, messages, temperature=0.
|
182 |
-
output_begin_string=None, max_new_tokens=
|
183 |
max_token=131072, skip_special_tokens=True,
|
184 |
model=None, tokenizer=None, terminators=None,
|
185 |
seed=None, check_token_status=False):
|
@@ -188,7 +428,7 @@ class TxAgent:
|
|
188 |
|
189 |
logits_processor = self.build_logits_processor(messages, model)
|
190 |
sampling_params = SamplingParams(
|
191 |
-
temperature=temperature,
|
192 |
max_tokens=max_new_tokens,
|
193 |
seed=seed if seed is not None else self.seed,
|
194 |
)
|
@@ -211,9 +451,13 @@ class TxAgent:
|
|
211 |
output = model.generate(prompt, sampling_params=sampling_params)
|
212 |
output_text = output[0].outputs[0].text
|
213 |
output_tokens = len(self.tokenizer.encode(output_text, add_special_tokens=False))
|
214 |
-
logger.debug("Inference output
|
|
|
|
|
|
|
|
|
|
|
215 |
|
216 |
-
return output_text if not check_token_status else (output_text, token_overflow)
|
217 |
def run_self_agent(self, message: str,
|
218 |
temperature: float,
|
219 |
max_new_tokens: int,
|
@@ -248,10 +492,21 @@ class TxAgent:
|
|
248 |
max_new_tokens: int,
|
249 |
max_token: int):
|
250 |
logger.info("Starting format agent")
|
251 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
conversation = self.set_system_prompt(
|
253 |
[], "Transform the agent's answer to a single letter: 'A', 'B', 'C', 'D'.")
|
254 |
-
conversation.append({"role": "user", "content": message +
|
|
|
255 |
return self.llm_infer(
|
256 |
messages=conversation,
|
257 |
temperature=temperature,
|
@@ -259,17 +514,108 @@ class TxAgent:
|
|
259 |
max_new_tokens=max_new_tokens,
|
260 |
max_token=max_token)
|
261 |
|
262 |
-
def
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
268 |
|
269 |
def run_gradio_chat(self, message: str,
|
270 |
history: list,
|
271 |
temperature: float,
|
272 |
-
max_new_tokens: int =
|
273 |
max_token: int = 131072,
|
274 |
call_agent: bool = False,
|
275 |
conversation: gr.State = None,
|
@@ -278,38 +624,71 @@ class TxAgent:
|
|
278 |
call_agent_level: int = 0,
|
279 |
sub_agent_task: str = None,
|
280 |
uploaded_files: list = None):
|
281 |
-
logger.info("Chat started, message: %s", message[:
|
282 |
if not message or len(message.strip()) < 5:
|
283 |
yield "Please provide a valid message or upload files to analyze."
|
284 |
return
|
285 |
|
286 |
-
picked_tools_prompt, call_agent_level = self.initialize_tools_prompt(
|
287 |
-
|
288 |
-
|
289 |
-
|
|
|
290 |
last_outputs = []
|
291 |
-
|
292 |
next_round = True
|
293 |
current_round = 0
|
|
|
|
|
|
|
294 |
|
295 |
try:
|
296 |
while next_round and current_round < max_round:
|
297 |
current_round += 1
|
298 |
-
logger.
|
299 |
-
|
300 |
if last_outputs:
|
301 |
-
function_call_messages, picked_tools_prompt, special_tool_call = self.
|
302 |
-
last_outputs,
|
|
|
|
|
|
|
|
|
|
|
|
|
303 |
|
304 |
-
conversation.extend(function_call_messages)
|
305 |
-
outputs.append(tool_result_format(function_call_messages))
|
306 |
if special_tool_call == 'Finish':
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
307 |
next_round = False
|
308 |
-
|
309 |
-
|
310 |
-
return
|
311 |
|
312 |
-
|
313 |
last_outputs_str, token_overflow = self.llm_infer(
|
314 |
messages=conversation,
|
315 |
temperature=temperature,
|
@@ -321,103 +700,95 @@ class TxAgent:
|
|
321 |
check_token_status=True)
|
322 |
|
323 |
if last_outputs_str is None:
|
|
|
324 |
if self.force_finish:
|
325 |
last_outputs_str = self.get_answer_based_on_unfinished_reasoning(
|
326 |
conversation, temperature, max_new_tokens, max_token)
|
327 |
-
|
|
|
328 |
return last_outputs_str
|
329 |
-
|
330 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
331 |
|
332 |
last_outputs.append(last_outputs_str)
|
333 |
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
339 |
|
340 |
except Exception as e:
|
341 |
-
logger.error("Exception in run_gradio_chat: %s", e)
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
# Can handle other special tools here
|
358 |
-
|
359 |
-
return function_call_messages, picked_tools_prompt, special_tool_call
|
360 |
-
|
361 |
-
def run_multistep_agent(self, message: str,
|
362 |
-
temperature: float,
|
363 |
-
max_new_tokens: int,
|
364 |
-
max_token: int,
|
365 |
-
max_round: int = 5,
|
366 |
-
call_agent=False,
|
367 |
-
call_agent_level=0):
|
368 |
-
logger.info("Starting multistep agent for message: %s", message[:100])
|
369 |
-
picked_tools_prompt, call_agent_level = self.initialize_tools_prompt(call_agent, call_agent_level, message)
|
370 |
-
conversation = self.initialize_conversation(message)
|
371 |
-
|
372 |
-
outputs = []
|
373 |
-
last_outputs = []
|
374 |
-
next_round = True
|
375 |
-
current_round = 0
|
376 |
-
|
377 |
-
while next_round and current_round < max_round:
|
378 |
-
current_round += 1
|
379 |
-
last_outputs_str, token_overflow = self.llm_infer(
|
380 |
-
messages=conversation,
|
381 |
-
temperature=temperature,
|
382 |
-
tools=picked_tools_prompt,
|
383 |
-
skip_special_tokens=False,
|
384 |
-
max_new_tokens=max_new_tokens,
|
385 |
-
max_token=max_token,
|
386 |
-
seed=self.seed,
|
387 |
-
check_token_status=True)
|
388 |
-
|
389 |
-
if last_outputs_str is None:
|
390 |
-
logger.warning("Token limit exceeded inside multistep agent")
|
391 |
-
return "⚠️ Token overflow."
|
392 |
-
|
393 |
-
outputs.append(last_outputs_str)
|
394 |
-
|
395 |
-
if "[FinalAnswer]" in last_outputs_str:
|
396 |
-
logger.info("Multistep Final Answer Provided")
|
397 |
-
return last_outputs_str.split("[FinalAnswer]")[-1]
|
398 |
-
|
399 |
-
last_outputs = [last_outputs_str]
|
400 |
-
|
401 |
-
return "⚠️ Max rounds exceeded."
|
402 |
|
403 |
def run_gradio_chat_batch(self, messages: List[str],
|
404 |
temperature: float,
|
405 |
-
max_new_tokens: int =
|
406 |
max_token: int = 131072,
|
407 |
call_agent: bool = False,
|
408 |
conversation: List = None,
|
409 |
max_round: int = 5,
|
410 |
seed: int = None,
|
411 |
call_agent_level: int = 0):
|
412 |
-
"""
|
413 |
logger.info("Starting batch chat for %d messages", len(messages))
|
414 |
batch_results = []
|
415 |
-
|
416 |
for message in messages:
|
|
|
417 |
conv = self.initialize_conversation(message, conversation, history=None)
|
418 |
picked_tools_prompt, call_agent_level = self.initialize_tools_prompt(
|
419 |
call_agent, call_agent_level, message)
|
420 |
-
|
|
|
421 |
output, token_overflow = self.llm_infer(
|
422 |
messages=conv,
|
423 |
temperature=temperature,
|
@@ -428,12 +799,12 @@ class TxAgent:
|
|
428 |
seed=seed,
|
429 |
check_token_status=True
|
430 |
)
|
431 |
-
|
432 |
if output is None:
|
433 |
logger.warning("Token limit exceeded for message: %s", message[:100])
|
434 |
-
batch_results.append("
|
435 |
else:
|
436 |
batch_results.append(output)
|
437 |
-
|
438 |
logger.info("Batch chat completed for %d messages", len(messages))
|
439 |
-
return batch_results
|
|
|
14 |
import torch
|
15 |
import logging
|
16 |
|
17 |
+
# Configure logging with a more specific logger name
|
18 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
19 |
logger = logging.getLogger("TxAgent")
|
20 |
|
21 |
from .utils import NoRepeatSentenceProcessor, ReasoningTraceChecker, tool_result_format
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
class TxAgent:
|
24 |
def __init__(self, model_name,
|
|
|
74 |
return f"The model {model_name} is already loaded."
|
75 |
self.model_name = model_name
|
76 |
|
|
|
77 |
self.model = LLM(
|
78 |
model=self.model_name,
|
79 |
dtype="float16",
|
80 |
max_model_len=131072,
|
81 |
+
max_num_batched_tokens=32768, # Increased for A100 80GB
|
82 |
+
gpu_memory_utilization=0.9, # Higher utilization for better performance
|
83 |
trust_remote_code=True
|
84 |
)
|
85 |
self.chat_template = Template(self.model.get_tokenizer().chat_template)
|
86 |
self.tokenizer = self.model.get_tokenizer()
|
87 |
logger.info(
|
88 |
"Model %s loaded with max_model_len=%d, max_num_batched_tokens=%d, gpu_memory_utilization=%.2f",
|
89 |
+
self.model_name, 131072, 32768, 0.9
|
90 |
)
|
91 |
return f"Model {model_name} loaded successfully."
|
92 |
|
|
|
106 |
self.rag_model.load_tool_desc_embedding(self.tooluniverse)
|
107 |
self.rag_model.save_embeddings(cache_path)
|
108 |
logger.debug("Tool description embeddings loaded")
|
109 |
+
|
110 |
def rag_infer(self, query, top_k=5):
|
111 |
return self.rag_model.rag_infer(query, top_k)
|
112 |
|
|
|
136 |
logger.debug("Conversation initialized with %d messages", len(conversation))
|
137 |
return conversation
|
138 |
|
139 |
+
def tool_RAG(self, message=None,
|
140 |
+
picked_tool_names=None,
|
141 |
+
existing_tools_prompt=[],
|
142 |
+
rag_num=0,
|
143 |
+
return_call_result=False):
|
144 |
+
if not self.enable_rag:
|
145 |
+
return []
|
146 |
+
extra_factor = 10
|
147 |
+
if picked_tool_names is None:
|
148 |
+
assert picked_tool_names is not None or message is not None
|
149 |
+
picked_tool_names = self.rag_infer(
|
150 |
+
message, top_k=rag_num * extra_factor)
|
151 |
+
|
152 |
+
picked_tool_names_no_special = [tool for tool in picked_tool_names if tool not in self.special_tools_name]
|
153 |
+
picked_tool_names = picked_tool_names_no_special[:rag_num]
|
154 |
+
|
155 |
+
picked_tools = self.tooluniverse.get_tool_by_name(picked_tool_names)
|
156 |
+
picked_tools_prompt = self.tooluniverse.prepare_tool_prompts(picked_tools)
|
157 |
+
logger.debug("Retrieved %d tools via RAG", len(picked_tools_prompt))
|
158 |
+
if return_call_result:
|
159 |
+
return picked_tools_prompt, picked_tool_names
|
160 |
+
return picked_tools_prompt
|
161 |
+
|
162 |
def add_special_tools(self, tools, call_agent=False):
|
163 |
if self.enable_finish:
|
164 |
tools.append(self.tooluniverse.get_one_tool_by_one_name('Finish', return_prompt=True))
|
|
|
168 |
logger.debug("CallAgent tool added")
|
169 |
return tools
|
170 |
|
171 |
+
def add_finish_tools(self, tools):
|
172 |
+
tools.append(self.tooluniverse.get_one_tool_by_one_name('Finish', return_prompt=True))
|
173 |
+
logger.debug("Finish tool added")
|
174 |
+
return tools
|
175 |
+
|
176 |
def set_system_prompt(self, conversation, sys_prompt):
|
177 |
if not conversation:
|
178 |
conversation.append({"role": "system", "content": sys_prompt})
|
|
|
180 |
conversation[0] = {"role": "system", "content": sys_prompt}
|
181 |
return conversation
|
182 |
|
183 |
+
def run_function_call(self, fcall_str,
|
184 |
+
return_message=False,
|
185 |
+
existing_tools_prompt=None,
|
186 |
+
message_for_call_agent=None,
|
187 |
+
call_agent=False,
|
188 |
+
call_agent_level=None,
|
189 |
+
temperature=None):
|
190 |
+
try:
|
191 |
+
function_call_json, message = self.tooluniverse.extract_function_call_json(
|
192 |
+
fcall_str, return_message=return_message, verbose=False)
|
193 |
+
except Exception as e:
|
194 |
+
logger.error("Tool call parsing failed: %s", e)
|
195 |
+
function_call_json = []
|
196 |
+
message = fcall_str
|
197 |
+
|
198 |
+
call_results = []
|
199 |
+
special_tool_call = ''
|
200 |
+
if function_call_json:
|
201 |
+
if isinstance(function_call_json, list):
|
202 |
+
for i in range(len(function_call_json)):
|
203 |
+
logger.info("Tool Call: %s", function_call_json[i])
|
204 |
+
if function_call_json[i]["name"] == 'Finish':
|
205 |
+
special_tool_call = 'Finish'
|
206 |
+
break
|
207 |
+
elif function_call_json[i]["name"] == 'CallAgent':
|
208 |
+
if call_agent_level < 2 and call_agent:
|
209 |
+
solution_plan = function_call_json[i]['arguments']['solution']
|
210 |
+
full_message = (
|
211 |
+
message_for_call_agent +
|
212 |
+
"\nYou must follow the following plan to answer the question: " +
|
213 |
+
str(solution_plan)
|
214 |
+
)
|
215 |
+
call_result = self.run_multistep_agent(
|
216 |
+
full_message, temperature=temperature,
|
217 |
+
max_new_tokens=512, max_token=131072,
|
218 |
+
call_agent=False, call_agent_level=call_agent_level)
|
219 |
+
if call_result is None:
|
220 |
+
call_result = "⚠️ No content returned from sub-agent."
|
221 |
+
else:
|
222 |
+
call_result = call_result.split('[FinalAnswer]')[-1].strip()
|
223 |
+
else:
|
224 |
+
call_result = "Error: CallAgent disabled."
|
225 |
+
else:
|
226 |
+
call_result = self.tooluniverse.run_one_function(function_call_json[i])
|
227 |
+
call_id = self.tooluniverse.call_id_gen()
|
228 |
+
function_call_json[i]["call_id"] = call_id
|
229 |
+
logger.info("Tool Call Result: %s", call_result)
|
230 |
+
call_results.append({
|
231 |
+
"role": "tool",
|
232 |
+
"content": json.dumps({"tool_name": function_call_json[i]["name"], "content": call_result, "call_id": call_id})
|
233 |
+
})
|
234 |
+
else:
|
235 |
+
call_results.append({
|
236 |
+
"role": "tool",
|
237 |
+
"content": json.dumps({"content": "Invalid or no function call detected."})
|
238 |
+
})
|
239 |
+
|
240 |
+
revised_messages = [{
|
241 |
+
"role": "assistant",
|
242 |
+
"content": message.strip(),
|
243 |
+
"tool_calls": json.dumps(function_call_json)
|
244 |
+
}] + call_results
|
245 |
+
return revised_messages, existing_tools_prompt, special_tool_call
|
246 |
+
|
247 |
+
def run_function_call_stream(self, fcall_str,
|
248 |
+
return_message=False,
|
249 |
+
existing_tools_prompt=None,
|
250 |
+
message_for_call_agent=None,
|
251 |
+
call_agent=False,
|
252 |
+
call_agent_level=None,
|
253 |
+
temperature=None,
|
254 |
+
return_gradio_history=True):
|
255 |
+
try:
|
256 |
+
function_call_json, message = self.tooluniverse.extract_function_call_json(
|
257 |
+
fcall_str, return_message=return_message, verbose=False)
|
258 |
+
except Exception as e:
|
259 |
+
logger.error("Tool call parsing failed: %s", e)
|
260 |
+
function_call_json = []
|
261 |
+
message = fcall_str
|
262 |
+
|
263 |
+
call_results = []
|
264 |
+
special_tool_call = ''
|
265 |
+
if return_gradio_history:
|
266 |
+
gradio_history = []
|
267 |
+
if function_call_json:
|
268 |
+
if isinstance(function_call_json, list):
|
269 |
+
for i in range(len(function_call_json)):
|
270 |
+
if function_call_json[i]["name"] == 'Finish':
|
271 |
+
special_tool_call = 'Finish'
|
272 |
+
break
|
273 |
+
elif function_call_json[i]["name"] == 'DirectResponse':
|
274 |
+
call_result = function_call_json[i]['arguments']['respose']
|
275 |
+
special_tool_call = 'DirectResponse'
|
276 |
+
elif function_call_json[i]["name"] == 'RequireClarification':
|
277 |
+
call_result = function_call_json[i]['arguments']['unclear_question']
|
278 |
+
special_tool_call = 'RequireClarification'
|
279 |
+
elif function_call_json[i]["name"] == 'CallAgent':
|
280 |
+
if call_agent_level < 2 and call_agent:
|
281 |
+
solution_plan = function_call_json[i]['arguments']['solution']
|
282 |
+
full_message = (
|
283 |
+
message_for_call_agent +
|
284 |
+
"\nYou must follow the following plan to answer the question: " +
|
285 |
+
str(solution_plan)
|
286 |
+
)
|
287 |
+
sub_agent_task = "Sub TxAgent plan: " + str(solution_plan)
|
288 |
+
call_result = yield from self.run_gradio_chat(
|
289 |
+
full_message, history=[], temperature=temperature,
|
290 |
+
max_new_tokens=512, max_token=131072,
|
291 |
+
call_agent=False, call_agent_level=call_agent_level,
|
292 |
+
conversation=None, sub_agent_task=sub_agent_task)
|
293 |
+
if call_result is not None and isinstance(call_result, str):
|
294 |
+
call_result = call_result.split('[FinalAnswer]')[-1]
|
295 |
+
else:
|
296 |
+
call_result = "⚠️ No content returned from sub-agent."
|
297 |
+
else:
|
298 |
+
call_result = "Error: CallAgent disabled."
|
299 |
+
else:
|
300 |
+
call_result = self.tooluniverse.run_one_function(function_call_json[i])
|
301 |
+
call_id = self.tooluniverse.call_id_gen()
|
302 |
+
function_call_json[i]["call_id"] = call_id
|
303 |
+
call_results.append({
|
304 |
+
"role": "tool",
|
305 |
+
"content": json.dumps({"tool_name": function_call_json[i]["name"], "content": call_result, "call_id": call_id})
|
306 |
+
})
|
307 |
+
if return_gradio_history and function_call_json[i]["name"] != 'Finish':
|
308 |
+
metadata = {"title": f"🧰 {function_call_json[i]['name']}", "log": str(function_call_json[i]['arguments'])}
|
309 |
+
gradio_history.append(ChatMessage(role="assistant", content=str(call_result), metadata=metadata))
|
310 |
+
else:
|
311 |
+
call_results.append({
|
312 |
+
"role": "tool",
|
313 |
+
"content": json.dumps({"content": "Invalid or no function call detected."})
|
314 |
+
})
|
315 |
+
|
316 |
+
revised_messages = [{
|
317 |
+
"role": "assistant",
|
318 |
+
"content": message.strip(),
|
319 |
+
"tool_calls": json.dumps(function_call_json)
|
320 |
+
}] + call_results
|
321 |
+
if return_gradio_history:
|
322 |
+
return revised_messages, existing_tools_prompt, special_tool_call, gradio_history
|
323 |
+
return revised_messages, existing_tools_prompt, special_tool_call
|
324 |
+
|
325 |
+
def get_answer_based_on_unfinished_reasoning(self, conversation, temperature, max_new_tokens, max_token, outputs=None):
|
326 |
+
if conversation[-1]['role'] == 'assistant':
|
327 |
+
conversation.append(
|
328 |
+
{'role': 'tool', 'content': 'Errors occurred during function call; provide final answer with current information.'})
|
329 |
+
finish_tools_prompt = self.add_finish_tools([])
|
330 |
+
last_outputs_str = self.llm_infer(
|
331 |
+
messages=conversation,
|
332 |
+
temperature=temperature,
|
333 |
+
tools=finish_tools_prompt,
|
334 |
+
output_begin_string='[FinalAnswer]',
|
335 |
+
skip_special_tokens=True,
|
336 |
+
max_new_tokens=max_new_tokens,
|
337 |
+
max_token=max_token)
|
338 |
+
logger.info("Unfinished reasoning answer: %s", last_outputs_str[:100])
|
339 |
+
return last_outputs_str
|
340 |
+
|
341 |
+
def run_multistep_agent(self, message: str,
|
342 |
+
temperature: float,
|
343 |
+
max_new_tokens: int,
|
344 |
+
max_token: int,
|
345 |
+
max_round: int = 5,
|
346 |
+
call_agent=False,
|
347 |
+
call_agent_level=0):
|
348 |
+
logger.info("Starting multistep agent for message: %s", message[:100])
|
349 |
+
picked_tools_prompt, call_agent_level = self.initialize_tools_prompt(
|
350 |
+
call_agent, call_agent_level, message)
|
351 |
+
conversation = self.initialize_conversation(message)
|
352 |
+
outputs = []
|
353 |
+
last_outputs = []
|
354 |
+
next_round = True
|
355 |
+
current_round = 0
|
356 |
+
token_overflow = False
|
357 |
+
enable_summary = False
|
358 |
+
last_status = {}
|
359 |
+
|
360 |
+
while next_round and current_round < max_round:
|
361 |
+
current_round += 1
|
362 |
+
if len(outputs) > 0:
|
363 |
+
function_call_messages, picked_tools_prompt, special_tool_call = self.run_function_call(
|
364 |
+
last_outputs, return_message=True,
|
365 |
+
existing_tools_prompt=picked_tools_prompt,
|
366 |
+
message_for_call_agent=message,
|
367 |
+
call_agent=call_agent,
|
368 |
+
call_agent_level=call_agent_level,
|
369 |
+
temperature=temperature)
|
370 |
+
|
371 |
+
if special_tool_call == 'Finish':
|
372 |
+
next_round = False
|
373 |
+
conversation.extend(function_call_messages)
|
374 |
+
content = function_call_messages[0]['content']
|
375 |
+
if content is None:
|
376 |
+
return "❌ No content returned after Finish tool call."
|
377 |
+
return content.split('[FinalAnswer]')[-1]
|
378 |
+
|
379 |
+
if (self.enable_summary or token_overflow) and not call_agent:
|
380 |
+
enable_summary = True
|
381 |
+
last_status = self.function_result_summary(
|
382 |
+
conversation, status=last_status, enable_summary=enable_summary)
|
383 |
+
|
384 |
+
if function_call_messages:
|
385 |
+
conversation.extend(function_call_messages)
|
386 |
+
outputs.append(tool_result_format(function_call_messages))
|
387 |
+
else:
|
388 |
+
next_round = False
|
389 |
+
conversation.extend([{"role": "assistant", "content": ''.join(last_outputs)}])
|
390 |
+
return ''.join(last_outputs).replace("</s>", "")
|
391 |
+
|
392 |
+
last_outputs = []
|
393 |
+
outputs.append("### TxAgent:\n")
|
394 |
+
last_outputs_str, token_overflow = self.llm_infer(
|
395 |
+
messages=conversation,
|
396 |
+
temperature=temperature,
|
397 |
+
tools=picked_tools_prompt,
|
398 |
+
skip_special_tokens=False,
|
399 |
+
max_new_tokens=2048,
|
400 |
+
max_token=131072,
|
401 |
+
check_token_status=True)
|
402 |
+
if last_outputs_str is None:
|
403 |
+
logger.warning("Token limit exceeded")
|
404 |
+
if self.force_finish:
|
405 |
+
return self.get_answer_based_on_unfinished_reasoning(
|
406 |
+
conversation, temperature, max_new_tokens, max_token)
|
407 |
+
return "❌ Token limit exceeded."
|
408 |
+
last_outputs.append(last_outputs_str)
|
409 |
+
|
410 |
+
if max_round == current_round:
|
411 |
+
logger.warning("Max rounds exceeded")
|
412 |
+
if self.force_finish:
|
413 |
+
return self.get_answer_based_on_unfinished_reasoning(
|
414 |
+
conversation, temperature, max_new_tokens, max_token)
|
415 |
+
return None
|
416 |
+
|
417 |
def build_logits_processor(self, messages, llm):
|
418 |
logger.warning("Logits processor disabled due to vLLM V1 limitation")
|
419 |
return None
|
420 |
|
421 |
+
def llm_infer(self, messages, temperature=0.1, tools=None,
|
422 |
+
output_begin_string=None, max_new_tokens=512,
|
423 |
max_token=131072, skip_special_tokens=True,
|
424 |
model=None, tokenizer=None, terminators=None,
|
425 |
seed=None, check_token_status=False):
|
|
|
428 |
|
429 |
logits_processor = self.build_logits_processor(messages, model)
|
430 |
sampling_params = SamplingParams(
|
431 |
+
temperature=temperature,
|
432 |
max_tokens=max_new_tokens,
|
433 |
seed=seed if seed is not None else self.seed,
|
434 |
)
|
|
|
451 |
output = model.generate(prompt, sampling_params=sampling_params)
|
452 |
output_text = output[0].outputs[0].text
|
453 |
output_tokens = len(self.tokenizer.encode(output_text, add_special_tokens=False))
|
454 |
+
logger.debug("Inference output: %s (output tokens: %d)", output_text[:100], output_tokens)
|
455 |
+
torch.cuda.empty_cache()
|
456 |
+
gc.collect()
|
457 |
+
if check_token_status and max_token is not None:
|
458 |
+
return output_text, token_overflow
|
459 |
+
return output_text
|
460 |
|
|
|
461 |
def run_self_agent(self, message: str,
|
462 |
temperature: float,
|
463 |
max_new_tokens: int,
|
|
|
492 |
max_new_tokens: int,
|
493 |
max_token: int):
|
494 |
logger.info("Starting format agent")
|
495 |
+
if '[FinalAnswer]' in answer:
|
496 |
+
possible_final_answer = answer.split("[FinalAnswer]")[-1]
|
497 |
+
elif "\n\n" in answer:
|
498 |
+
possible_final_answer = answer.split("\n\n")[-1]
|
499 |
+
else:
|
500 |
+
possible_final_answer = answer.strip()
|
501 |
+
if len(possible_final_answer) == 1 and possible_final_answer in ['A', 'B', 'C', 'D', 'E']:
|
502 |
+
return possible_final_answer
|
503 |
+
elif len(possible_final_answer) > 1 and possible_final_answer[1] == ':' and possible_final_answer[0] in ['A', 'B', 'C', 'D', 'E']:
|
504 |
+
return possible_final_answer[0]
|
505 |
+
|
506 |
conversation = self.set_system_prompt(
|
507 |
[], "Transform the agent's answer to a single letter: 'A', 'B', 'C', 'D'.")
|
508 |
+
conversation.append({"role": "user", "content": message +
|
509 |
+
"\nAgent's answer: " + answer + "\nAnswer (must be a letter):"})
|
510 |
return self.llm_infer(
|
511 |
messages=conversation,
|
512 |
temperature=temperature,
|
|
|
514 |
max_new_tokens=max_new_tokens,
|
515 |
max_token=max_token)
|
516 |
|
517 |
+
def run_summary_agent(self, thought_calls: str,
|
518 |
+
function_response: str,
|
519 |
+
temperature: float,
|
520 |
+
max_new_tokens: int,
|
521 |
+
max_token: int):
|
522 |
+
logger.info("Summarizing tool result")
|
523 |
+
prompt = f"""Thought and function calls:
|
524 |
+
{thought_calls}
|
525 |
+
Function calls' responses:
|
526 |
+
\"\"\"
|
527 |
+
{function_response}
|
528 |
+
\"\"\"
|
529 |
+
Summarize the function calls' l responses in one sentence with all necessary information.
|
530 |
+
"""
|
531 |
+
conversation = [{"role": "user", "content": prompt}]
|
532 |
+
output = self.llm_infer(
|
533 |
+
messages=conversation,
|
534 |
+
temperature=temperature,
|
535 |
+
tools=None,
|
536 |
+
max_new_tokens=max_new_tokens,
|
537 |
+
max_token=max_token)
|
538 |
+
if '[' in output:
|
539 |
+
output = output.split('[')[0]
|
540 |
+
return output
|
541 |
+
|
542 |
+
def function_result_summary(self, input_list, status, enable_summary):
|
543 |
+
if 'tool_call_step' not in status:
|
544 |
+
status['tool_call_step'] = 0
|
545 |
+
for idx in range(len(input_list)):
|
546 |
+
pos_id = len(input_list) - idx - 1
|
547 |
+
if input_list[pos_id]['role'] == 'assistant' and 'tool_calls' in input_list[pos_id]:
|
548 |
+
break
|
549 |
+
|
550 |
+
status['step'] = status.get('step', 0) + 1
|
551 |
+
if not enable_summary:
|
552 |
+
return status
|
553 |
+
|
554 |
+
status['summarized_index'] = status.get('summarized_index', 0)
|
555 |
+
status['summarized_step'] = status.get('summarized_step', 0)
|
556 |
+
status['previous_length'] = status.get('previous_length', 0)
|
557 |
+
status['history'] = status.get('history', [])
|
558 |
+
|
559 |
+
function_response = ''
|
560 |
+
idx = status['summarized_index']
|
561 |
+
this_thought_calls = None
|
562 |
+
|
563 |
+
while idx < len(input_list):
|
564 |
+
if (self.summary_mode == 'step' and status['summarized_step'] < status['step'] - status['tool_call_step'] - self.summary_skip_last_k) or \
|
565 |
+
(self.summary_mode == 'length' and status['previous_length'] > self.summary_context_length):
|
566 |
+
if input_list[idx]['role'] == 'assistant':
|
567 |
+
if function_response:
|
568 |
+
status['summarized_step'] += 1
|
569 |
+
result_summary = self.run_summary_agent(
|
570 |
+
thought_calls=this_thought_calls,
|
571 |
+
function_response=function_response,
|
572 |
+
temperature=0.1,
|
573 |
+
max_new_tokens=512,
|
574 |
+
max_token=131072)
|
575 |
+
input_list.insert(last_call_idx + 1, {'role': 'tool', 'content': result_summary})
|
576 |
+
status['summarized_index'] = last_call_idx + 2
|
577 |
+
idx += 1
|
578 |
+
last_call_idx = idx
|
579 |
+
this_thought_calls = input_list[idx]['content'] + input_list[idx]['tool_calls']
|
580 |
+
function_response = ''
|
581 |
+
elif input_list[idx]['role'] == 'tool' and this_thought_calls is not None:
|
582 |
+
function_response += input_list[idx]['content']
|
583 |
+
del input_list[idx]
|
584 |
+
idx -= 1
|
585 |
+
else:
|
586 |
+
break
|
587 |
+
idx += 1
|
588 |
+
|
589 |
+
if function_response:
|
590 |
+
status['summarized_step'] += 1
|
591 |
+
result_summary = self.run_summary_agent(
|
592 |
+
thought_calls=this_thought_calls,
|
593 |
+
function_response=function_response,
|
594 |
+
temperature=0.1,
|
595 |
+
max_new_tokens=512,
|
596 |
+
max_token=131072)
|
597 |
+
tool_calls = json.loads(input_list[last_call_idx]['tool_calls'])
|
598 |
+
for tool_call in tool_calls:
|
599 |
+
del tool_call['call_id']
|
600 |
+
input_list[last_call_idx]['tool_calls'] = json.dumps(tool_calls)
|
601 |
+
input_list.insert(last_call_idx + 1, {'role': 'tool', 'content': result_summary})
|
602 |
+
status['summarized_index'] = last_call_idx + 2
|
603 |
+
|
604 |
+
return status
|
605 |
+
|
606 |
+
def update_parameters(self, **kwargs):
|
607 |
+
updated_attributes = {}
|
608 |
+
for key, value in kwargs.items():
|
609 |
+
if hasattr(self, key):
|
610 |
+
setattr(self, key, value)
|
611 |
+
updated_attributes[key] = value
|
612 |
+
logger.info("Updated parameters: %s", updated_attributes)
|
613 |
+
return updated_attributes
|
614 |
|
615 |
def run_gradio_chat(self, message: str,
|
616 |
history: list,
|
617 |
temperature: float,
|
618 |
+
max_new_tokens: int = 2048,
|
619 |
max_token: int = 131072,
|
620 |
call_agent: bool = False,
|
621 |
conversation: gr.State = None,
|
|
|
624 |
call_agent_level: int = 0,
|
625 |
sub_agent_task: str = None,
|
626 |
uploaded_files: list = None):
|
627 |
+
logger.info("Chat started, message: %s", message[:100])
|
628 |
if not message or len(message.strip()) < 5:
|
629 |
yield "Please provide a valid message or upload files to analyze."
|
630 |
return
|
631 |
|
632 |
+
picked_tools_prompt, call_agent_level = self.initialize_tools_prompt(
|
633 |
+
call_agent, call_agent_level, message)
|
634 |
+
conversation = self.initialize_conversation(
|
635 |
+
message, conversation, history)
|
636 |
+
history = []
|
637 |
last_outputs = []
|
638 |
+
|
639 |
next_round = True
|
640 |
current_round = 0
|
641 |
+
enable_summary = False
|
642 |
+
last_status = {}
|
643 |
+
token_overflow = False
|
644 |
|
645 |
try:
|
646 |
while next_round and current_round < max_round:
|
647 |
current_round += 1
|
648 |
+
logger.debug("Starting round %d/%d", current_round, max_round)
|
|
|
649 |
if last_outputs:
|
650 |
+
function_call_messages, picked_tools_prompt, special_tool_call, current_gradio_history = yield from self.run_function_call_stream(
|
651 |
+
last_outputs, return_message=True,
|
652 |
+
existing_tools_prompt=picked_tools_prompt,
|
653 |
+
message_for_call_agent=message,
|
654 |
+
call_agent=call_agent,
|
655 |
+
call_agent_level=call_agent_level,
|
656 |
+
temperature=temperature)
|
657 |
+
history.extend(current_gradio_history)
|
658 |
|
|
|
|
|
659 |
if special_tool_call == 'Finish':
|
660 |
+
logger.info("Finish tool called, ending chat")
|
661 |
+
yield history
|
662 |
+
next_round = False
|
663 |
+
conversation.extend(function_call_messages)
|
664 |
+
content = function_call_messages[0]['content']
|
665 |
+
if content:
|
666 |
+
return content
|
667 |
+
return "No content returned after Finish tool call."
|
668 |
+
|
669 |
+
elif special_tool_call in ['RequireClarification', 'DirectResponse']:
|
670 |
+
last_msg = history[-1] if history else ChatMessage(role="assistant", content="Response needed.")
|
671 |
+
history.append(ChatMessage(role="assistant", content=last_msg.content))
|
672 |
+
logger.info("Special tool %s called, ending chat", special_tool_call)
|
673 |
+
yield history
|
674 |
+
next_round = False
|
675 |
+
return last_msg.content
|
676 |
+
|
677 |
+
if (self.enable_summary or token_overflow) and not call_agent:
|
678 |
+
enable_summary = True
|
679 |
+
last_status = self.function_result_summary(
|
680 |
+
conversation, status=last_status, enable_summary=enable_summary)
|
681 |
+
|
682 |
+
if function_call_messages:
|
683 |
+
conversation.extend(function_call_messages)
|
684 |
+
yield history
|
685 |
+
else:
|
686 |
next_round = False
|
687 |
+
conversation.append({"role": "assistant", "content": ''.join(last_outputs)})
|
688 |
+
logger.info("No function call messages, ending chat")
|
689 |
+
return ''.join(last_outputs).replace("</s>", "")
|
690 |
|
691 |
+
last_outputs = []
|
692 |
last_outputs_str, token_overflow = self.llm_infer(
|
693 |
messages=conversation,
|
694 |
temperature=temperature,
|
|
|
700 |
check_token_status=True)
|
701 |
|
702 |
if last_outputs_str is None:
|
703 |
+
logger.warning("Token limit exceeded")
|
704 |
if self.force_finish:
|
705 |
last_outputs_str = self.get_answer_based_on_unfinished_reasoning(
|
706 |
conversation, temperature, max_new_tokens, max_token)
|
707 |
+
history.append(ChatMessage(role="assistant", content=last_outputs_str.strip()))
|
708 |
+
yield history
|
709 |
return last_outputs_str
|
710 |
+
error_msg = "Token limit exceeded."
|
711 |
+
history.append(ChatMessage(role="assistant", content=error_msg))
|
712 |
+
yield history
|
713 |
+
return error_msg
|
714 |
+
|
715 |
+
last_thought = last_outputs_str.split("[TOOL_CALLS]")[0]
|
716 |
+
for msg in history:
|
717 |
+
if msg.metadata is not None:
|
718 |
+
msg.metadata['status'] = 'done'
|
719 |
+
|
720 |
+
if '[FinalAnswer]' in last_thought:
|
721 |
+
parts = last_thought.split('[FinalAnswer]', 1)
|
722 |
+
final_thought, final_answer = parts if len(parts) == 2 else (last_thought, "")
|
723 |
+
history.append(ChatMessage(role="assistant", content=final_thought.strip()))
|
724 |
+
yield history
|
725 |
+
history.append(ChatMessage(role="assistant", content="**🧠 Final Analysis:**\n" + final_answer.strip()))
|
726 |
+
logger.info("Final answer provided: %s", final_answer[:100])
|
727 |
+
yield history
|
728 |
+
next_round = False # Ensure we exit after final answer
|
729 |
+
return final_answer
|
730 |
+
else:
|
731 |
+
history.append(ChatMessage(role="assistant", content=last_thought))
|
732 |
+
yield history
|
733 |
|
734 |
last_outputs.append(last_outputs_str)
|
735 |
|
736 |
+
if next_round:
|
737 |
+
if self.force_finish:
|
738 |
+
last_outputs_str = self.get_answer_based_on_unfinished_reasoning(
|
739 |
+
conversation, temperature, max_new_tokens, max_token)
|
740 |
+
parts = last_outputs_str.split('[FinalAnswer]', 1)
|
741 |
+
final_thought, final_answer = parts if len(parts) == 2 else (last_outputs_str, "")
|
742 |
+
history.append(ChatMessage(role="assistant", content=final_thought.strip()))
|
743 |
+
yield history
|
744 |
+
history.append(ChatMessage(role="assistant", content="**🧠 Final Analysis:**\n" + final_answer.strip()))
|
745 |
+
logger.info("Forced final answer: %s", final_answer[:100])
|
746 |
+
yield history
|
747 |
+
return final_answer
|
748 |
+
else:
|
749 |
+
error_msg = "Reasoning rounds exceeded limit."
|
750 |
+
history.append(ChatMessage(role="assistant", content=error_msg))
|
751 |
+
yield history
|
752 |
+
return error_msg
|
753 |
|
754 |
except Exception as e:
|
755 |
+
logger.error("Exception in run_gradio_chat: %s", e, exc_info=True)
|
756 |
+
error_msg = f"Error: {e}"
|
757 |
+
history.append(ChatMessage(role="assistant", content=error_msg))
|
758 |
+
yield history
|
759 |
+
if self.force_finish:
|
760 |
+
last_outputs_str = self.get_answer_based_on_unfinished_reasoning(
|
761 |
+
conversation, temperature, max_new_tokens, max_token)
|
762 |
+
parts = last_outputs_str.split('[FinalAnswer]', 1)
|
763 |
+
final_thought, final_answer = parts if len(parts) == 2 else (last_outputs_str, "")
|
764 |
+
history.append(ChatMessage(role="assistant", content=final_thought.strip()))
|
765 |
+
yield history
|
766 |
+
history.append(ChatMessage(role="assistant", content="**🧠 Final Analysis:**\n" + final_answer.strip()))
|
767 |
+
logger.info("Forced final answer after error: %s", final_answer[:100])
|
768 |
+
yield history
|
769 |
+
return final_answer
|
770 |
+
return error_msg
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
771 |
|
772 |
def run_gradio_chat_batch(self, messages: List[str],
|
773 |
temperature: float,
|
774 |
+
max_new_tokens: int = 2048,
|
775 |
max_token: int = 131072,
|
776 |
call_agent: bool = False,
|
777 |
conversation: List = None,
|
778 |
max_round: int = 5,
|
779 |
seed: int = None,
|
780 |
call_agent_level: int = 0):
|
781 |
+
"""Run batch inference for multiple messages."""
|
782 |
logger.info("Starting batch chat for %d messages", len(messages))
|
783 |
batch_results = []
|
784 |
+
|
785 |
for message in messages:
|
786 |
+
# Initialize conversation for each message
|
787 |
conv = self.initialize_conversation(message, conversation, history=None)
|
788 |
picked_tools_prompt, call_agent_level = self.initialize_tools_prompt(
|
789 |
call_agent, call_agent_level, message)
|
790 |
+
|
791 |
+
# Run single inference for simplicity (extend for multi-round if needed)
|
792 |
output, token_overflow = self.llm_infer(
|
793 |
messages=conv,
|
794 |
temperature=temperature,
|
|
|
799 |
seed=seed,
|
800 |
check_token_status=True
|
801 |
)
|
802 |
+
|
803 |
if output is None:
|
804 |
logger.warning("Token limit exceeded for message: %s", message[:100])
|
805 |
+
batch_results.append("Token limit exceeded.")
|
806 |
else:
|
807 |
batch_results.append(output)
|
808 |
+
|
809 |
logger.info("Batch chat completed for %d messages", len(messages))
|
810 |
+
return batch_results
|