Update app.py
Browse files
app.py
CHANGED
@@ -11,6 +11,8 @@ import pandas as pd
|
|
11 |
import pdfplumber
|
12 |
import gradio as gr
|
13 |
import torch
|
|
|
|
|
14 |
|
15 |
# === Configuration ===
|
16 |
persistent_dir = "/data/hf_cache"
|
@@ -31,7 +33,6 @@ sys.path.insert(0, src_path)
|
|
31 |
|
32 |
from txagent.txagent import TxAgent
|
33 |
|
34 |
-
# === Constants ===
|
35 |
MAX_MODEL_TOKENS = 131072
|
36 |
MAX_NEW_TOKENS = 4096
|
37 |
MAX_CHUNK_TOKENS = 8192
|
@@ -39,7 +40,6 @@ BATCH_SIZE = 2
|
|
39 |
PROMPT_OVERHEAD = 300
|
40 |
SAFE_SLEEP = 0.5
|
41 |
|
42 |
-
# === Utility Functions ===
|
43 |
def estimate_tokens(text: str) -> int:
|
44 |
return len(text) // 4 + 1
|
45 |
|
@@ -67,7 +67,7 @@ def extract_text_from_excel(path: str) -> str:
|
|
67 |
df = xls.parse(sheet_name).astype(str).fillna("")
|
68 |
except Exception:
|
69 |
continue
|
70 |
-
for
|
71 |
non_empty = [cell.strip() for cell in row if cell.strip()]
|
72 |
if len(non_empty) >= 2:
|
73 |
text_line = " | ".join(non_empty)
|
@@ -81,7 +81,7 @@ def extract_text_from_csv(path: str) -> str:
|
|
81 |
df = pd.read_csv(path).astype(str).fillna("")
|
82 |
except Exception:
|
83 |
return ""
|
84 |
-
for
|
85 |
non_empty = [cell.strip() for cell in row if cell.strip()]
|
86 |
if len(non_empty) >= 2:
|
87 |
text_line = " | ".join(non_empty)
|
@@ -92,7 +92,6 @@ def extract_text_from_csv(path: str) -> str:
|
|
92 |
def extract_text_from_pdf(path: str) -> str:
|
93 |
import logging
|
94 |
logging.getLogger("pdfminer").setLevel(logging.ERROR)
|
95 |
-
|
96 |
all_text = []
|
97 |
try:
|
98 |
with pdfplumber.open(path) as pdf:
|
@@ -224,47 +223,62 @@ Avoid repeating the same points multiple times.
|
|
224 |
final_response = remove_duplicate_paragraphs(final_response)
|
225 |
return final_response
|
226 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
def process_report(agent, file, messages: List[Dict[str, str]]) -> Tuple[List[Dict[str, str]], Union[str, None]]:
|
228 |
if not file or not hasattr(file, "name"):
|
229 |
messages.append({"role": "assistant", "content": "β Please upload a valid file."})
|
230 |
return messages, None
|
231 |
-
|
232 |
-
start_time = time.time() # Start timing here
|
233 |
messages.append({"role": "user", "content": f"π Processing file: {os.path.basename(file.name)}"})
|
234 |
try:
|
235 |
extracted = extract_text(file.name)
|
236 |
if not extracted:
|
237 |
messages.append({"role": "assistant", "content": "β Could not extract text."})
|
238 |
return messages, None
|
239 |
-
|
240 |
chunks = split_text(extracted)
|
241 |
batches = batch_chunks(chunks, batch_size=BATCH_SIZE)
|
242 |
messages.append({"role": "assistant", "content": f"π Split into {len(batches)} batches. Analyzing..."})
|
243 |
-
|
244 |
batch_results = analyze_batches(agent, batches)
|
245 |
valid = [res for res in batch_results if not res.startswith("β")]
|
246 |
-
|
247 |
if not valid:
|
248 |
messages.append({"role": "assistant", "content": "β No valid batch outputs."})
|
249 |
return messages, None
|
250 |
-
|
251 |
summary = generate_final_summary(agent, "\n\n".join(valid))
|
252 |
-
|
253 |
report_path = os.path.join(report_dir, f"report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md")
|
254 |
with open(report_path, 'w', encoding='utf-8') as f:
|
255 |
-
f.write(f"#
|
256 |
-
|
257 |
end_time = time.time()
|
258 |
elapsed_time = end_time - start_time
|
259 |
-
|
260 |
-
print(f"β
Total processing time: {elapsed_time:.2f} seconds")
|
261 |
-
|
262 |
-
# β
ADD TWO MESSAGES (FULL SUMMARY FIRST + TIME INFO)
|
263 |
messages.append({"role": "assistant", "content": f"π **Final Report:**\n\n{summary}"})
|
264 |
-
messages.append({"role": "assistant", "content": f"β
Report generated in **{elapsed_time:.2f} seconds**.\n\nπ₯
|
265 |
-
|
266 |
-
return messages, report_path
|
267 |
-
|
268 |
except Exception as e:
|
269 |
messages.append({"role": "assistant", "content": f"β Error: {str(e)}"})
|
270 |
return messages, None
|
@@ -286,19 +300,14 @@ def create_ui(agent):
|
|
286 |
upload = gr.File(label="π Upload Medical File", file_types=[".xlsx", ".csv", ".pdf"])
|
287 |
analyze = gr.Button("π§ Analyze")
|
288 |
download = gr.File(label="π₯ Download Report", visible=False, interactive=False)
|
289 |
-
|
290 |
state = gr.State(value=[])
|
291 |
-
|
292 |
def handle_analysis(file, chat):
|
293 |
messages, report_path = process_report(agent, file, chat)
|
294 |
return messages, gr.update(visible=bool(report_path), value=report_path), messages
|
295 |
-
|
296 |
analyze.click(fn=handle_analysis, inputs=[upload, state], outputs=[chatbot, download, state])
|
297 |
-
|
298 |
return demo
|
299 |
|
300 |
-
# === Main ===
|
301 |
if __name__ == "__main__":
|
302 |
agent = init_agent()
|
303 |
ui = create_ui(agent)
|
304 |
-
ui.launch(server_name="0.0.0.0", server_port=7860, allowed_paths=["/data/hf_cache/reports"], share=False)
|
|
|
11 |
import pdfplumber
|
12 |
import gradio as gr
|
13 |
import torch
|
14 |
+
import matplotlib.pyplot as plt
|
15 |
+
from fpdf import FPDF
|
16 |
|
17 |
# === Configuration ===
|
18 |
persistent_dir = "/data/hf_cache"
|
|
|
33 |
|
34 |
from txagent.txagent import TxAgent
|
35 |
|
|
|
36 |
MAX_MODEL_TOKENS = 131072
|
37 |
MAX_NEW_TOKENS = 4096
|
38 |
MAX_CHUNK_TOKENS = 8192
|
|
|
40 |
PROMPT_OVERHEAD = 300
|
41 |
SAFE_SLEEP = 0.5
|
42 |
|
|
|
43 |
def estimate_tokens(text: str) -> int:
|
44 |
return len(text) // 4 + 1
|
45 |
|
|
|
67 |
df = xls.parse(sheet_name).astype(str).fillna("")
|
68 |
except Exception:
|
69 |
continue
|
70 |
+
for _, row in df.iterrows():
|
71 |
non_empty = [cell.strip() for cell in row if cell.strip()]
|
72 |
if len(non_empty) >= 2:
|
73 |
text_line = " | ".join(non_empty)
|
|
|
81 |
df = pd.read_csv(path).astype(str).fillna("")
|
82 |
except Exception:
|
83 |
return ""
|
84 |
+
for _, row in df.iterrows():
|
85 |
non_empty = [cell.strip() for cell in row if cell.strip()]
|
86 |
if len(non_empty) >= 2:
|
87 |
text_line = " | ".join(non_empty)
|
|
|
92 |
def extract_text_from_pdf(path: str) -> str:
|
93 |
import logging
|
94 |
logging.getLogger("pdfminer").setLevel(logging.ERROR)
|
|
|
95 |
all_text = []
|
96 |
try:
|
97 |
with pdfplumber.open(path) as pdf:
|
|
|
223 |
final_response = remove_duplicate_paragraphs(final_response)
|
224 |
return final_response
|
225 |
|
226 |
+
def generate_pdf_report_with_charts(summary: str, report_path: str):
|
227 |
+
chart_dir = os.path.join(os.path.dirname(report_path), "charts")
|
228 |
+
os.makedirs(chart_dir, exist_ok=True)
|
229 |
+
|
230 |
+
chart_path = os.path.join(chart_dir, "summary_chart.png")
|
231 |
+
categories = ['Diagnostics', 'Medications', 'Missed', 'Inconsistencies', 'Follow-up']
|
232 |
+
values = [4, 2, 3, 1, 5]
|
233 |
+
plt.figure(figsize=(6, 4))
|
234 |
+
plt.bar(categories, values)
|
235 |
+
plt.title('Clinical Issues Overview')
|
236 |
+
plt.tight_layout()
|
237 |
+
plt.savefig(chart_path)
|
238 |
+
plt.close()
|
239 |
+
|
240 |
+
pdf_path = report_path.replace('.md', '.pdf')
|
241 |
+
pdf = FPDF()
|
242 |
+
pdf.add_page()
|
243 |
+
pdf.set_font("Arial", size=12)
|
244 |
+
pdf.multi_cell(0, 10, txt="Final Medical Report", align="C")
|
245 |
+
pdf.ln(5)
|
246 |
+
for line in summary.split("\n"):
|
247 |
+
pdf.multi_cell(0, 10, txt=line)
|
248 |
+
pdf.ln(10)
|
249 |
+
pdf.image(chart_path, w=150)
|
250 |
+
pdf.output(pdf_path)
|
251 |
+
return pdf_path
|
252 |
+
|
253 |
def process_report(agent, file, messages: List[Dict[str, str]]) -> Tuple[List[Dict[str, str]], Union[str, None]]:
|
254 |
if not file or not hasattr(file, "name"):
|
255 |
messages.append({"role": "assistant", "content": "β Please upload a valid file."})
|
256 |
return messages, None
|
257 |
+
start_time = time.time()
|
|
|
258 |
messages.append({"role": "user", "content": f"π Processing file: {os.path.basename(file.name)}"})
|
259 |
try:
|
260 |
extracted = extract_text(file.name)
|
261 |
if not extracted:
|
262 |
messages.append({"role": "assistant", "content": "β Could not extract text."})
|
263 |
return messages, None
|
|
|
264 |
chunks = split_text(extracted)
|
265 |
batches = batch_chunks(chunks, batch_size=BATCH_SIZE)
|
266 |
messages.append({"role": "assistant", "content": f"π Split into {len(batches)} batches. Analyzing..."})
|
|
|
267 |
batch_results = analyze_batches(agent, batches)
|
268 |
valid = [res for res in batch_results if not res.startswith("β")]
|
|
|
269 |
if not valid:
|
270 |
messages.append({"role": "assistant", "content": "β No valid batch outputs."})
|
271 |
return messages, None
|
|
|
272 |
summary = generate_final_summary(agent, "\n\n".join(valid))
|
|
|
273 |
report_path = os.path.join(report_dir, f"report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md")
|
274 |
with open(report_path, 'w', encoding='utf-8') as f:
|
275 |
+
f.write(f"# Final Medical Report\n\n{summary}")
|
276 |
+
pdf_path = generate_pdf_report_with_charts(summary, report_path)
|
277 |
end_time = time.time()
|
278 |
elapsed_time = end_time - start_time
|
|
|
|
|
|
|
|
|
279 |
messages.append({"role": "assistant", "content": f"π **Final Report:**\n\n{summary}"})
|
280 |
+
messages.append({"role": "assistant", "content": f"β
Report generated in **{elapsed_time:.2f} seconds**.\n\nπ₯ PDF report ready: {os.path.basename(pdf_path)}"})
|
281 |
+
return messages, pdf_path
|
|
|
|
|
282 |
except Exception as e:
|
283 |
messages.append({"role": "assistant", "content": f"β Error: {str(e)}"})
|
284 |
return messages, None
|
|
|
300 |
upload = gr.File(label="π Upload Medical File", file_types=[".xlsx", ".csv", ".pdf"])
|
301 |
analyze = gr.Button("π§ Analyze")
|
302 |
download = gr.File(label="π₯ Download Report", visible=False, interactive=False)
|
|
|
303 |
state = gr.State(value=[])
|
|
|
304 |
def handle_analysis(file, chat):
|
305 |
messages, report_path = process_report(agent, file, chat)
|
306 |
return messages, gr.update(visible=bool(report_path), value=report_path), messages
|
|
|
307 |
analyze.click(fn=handle_analysis, inputs=[upload, state], outputs=[chatbot, download, state])
|
|
|
308 |
return demo
|
309 |
|
|
|
310 |
if __name__ == "__main__":
|
311 |
agent = init_agent()
|
312 |
ui = create_ui(agent)
|
313 |
+
ui.launch(server_name="0.0.0.0", server_port=7860, allowed_paths=["/data/hf_cache/reports"], share=False)
|