Spaces:
Running
Running
File size: 4,263 Bytes
caff61e bccf53b dc80d48 0152e0c a186d85 9ac3666 a186d85 d791bba ac43c04 d791bba a186d85 0152e0c 0e19825 b5a364c 9ac3666 36e1064 9ac3666 0152e0c 9ac3666 0152e0c 9ac3666 d5e3d23 7536404 e82b28e a186d85 8513c99 a186d85 ac43c04 a186d85 ac43c04 a186d85 ac43c04 9ac3666 ac43c04 9ac3666 ac43c04 9ac3666 ac43c04 9ac3666 ac43c04 0e19825 8513c99 9ac3666 b1205e9 a186d85 9ac3666 a186d85 9ac3666 d73ddf5 9ac3666 a186d85 9ac3666 a186d85 d5e3d23 a186d85 9ac3666 6fea677 d5e3d23 8513c99 d5e3d23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
import torch
import numpy as np
import gradio as gr
import cv2
import time
import os
import onnxruntime
from pathlib import Path
from ultralytics import YOLO
# Load YOLOv5 model for ONNX export
model = YOLO("yolov5n.pt")
# Export to ONNX format
model.export(format="onnx", dynamic=True)
os.makedirs("models", exist_ok=True)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
model_path = Path("models/yolov5n.onnx")
if not model_path.exists():
print("Downloading YOLOv5n model and converting to ONNX...")
model = torch.hub.load("ultralytics/yolov5", "yolov5n", pretrained=True).to(device)
model.eval()
# Exporting to ONNX
model.export(format="onnx", dynamic=True)
os.rename("yolov5n.onnx", model_path)
del model # Free memory
# Loading ONNX model for ultra-fast inference
session = onnxruntime.InferenceSession(str(model_path), providers=['CUDAExecutionProvider'])
# Generate random colors for each class
np.random.seed(42)
colors = np.random.uniform(0, 255, size=(80, 3))
total_inference_time = 0
inference_count = 0
def detect_objects(image):
global total_inference_time, inference_count
if image is None:
return None
start_time = time.time()
# Preprocess image
original_shape = image.shape
input_shape = (416, 416)
image_resized = cv2.resize(image, input_shape)
image_norm = image_resized.astype(np.float32) / 255.0
image_transposed = np.transpose(image_norm, (2, 0, 1))
image_batch = np.expand_dims(image_transposed, axis=0)
# Get input name and run inference
input_name = session.get_inputs()[0].name
outputs = session.run(None, {input_name: image_batch})
# Process detections
detections = outputs[0][0] # First batch, all detections
# Calculate timing
inference_time = time.time() - start_time
total_inference_time += inference_time
inference_count += 1
avg_inference_time = total_inference_time / inference_count
fps = 1 / inference_time
# Create a copy of the original image for visualization
output_image = image.copy()
# Scale factor for bounding box coordinates
scale_x = original_shape[1] / input_shape[0]
scale_y = original_shape[0] / input_shape[1]
# Draw bounding boxes and labels
for det in detections:
x1, y1, x2, y2, conf, class_id = det[:6]
if conf < 0.3: # Confidence threshold
continue
# Convert to original image coordinates
x1, x2 = int(x1 * scale_x), int(x2 * scale_x)
y1, y2 = int(y1 * scale_y), int(y2 * scale_y)
class_id = int(class_id)
# Draw rectangle and label
color = tuple(map(int, colors[class_id]))
cv2.rectangle(output_image, (x1, y1), (x2, y2), color, 2)
label = f"Class {class_id} {conf:.2f}"
cv2.putText(output_image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
# Display FPS
cv2.putText(output_image, f"FPS: {fps:.2f}", (20, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
cv2.putText(output_image, f"Avg FPS: {1/avg_inference_time:.2f}", (20, 70), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
return output_image
# Gradio Interface
example_images = ["spring_street_after.jpg", "pexels-hikaique-109919.jpg"]
os.makedirs("examples", exist_ok=True)
with gr.Blocks(title="Optimized YOLOv5 Object Detection") as demo:
gr.Markdown("# **Optimized YOLOv5 Object Detection** π")
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(label="Input Image", type="numpy")
submit_button = gr.Button("Detect Objects", variant="primary")
clear_button = gr.Button("Clear")
with gr.Column(scale=1):
output_image = gr.Image(label="Detected Objects", type="numpy")
gr.Examples(
examples=example_images,
inputs=input_image,
outputs=output_image,
fn=detect_objects,
cache_examples=True
)
submit_button.click(fn=detect_objects, inputs=input_image, outputs=output_image)
clear_button.click(lambda: (None, None), None, [input_image, output_image])
demo.launch()
|