Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -9,12 +9,11 @@ from pathlib import Path
|
|
9 |
from ultralytics import YOLO
|
10 |
|
11 |
# Load YOLOv5 model for ONNX export
|
12 |
-
model = YOLO("yolov5n.pt")
|
13 |
|
14 |
# Export to ONNX format
|
15 |
model.export(format="onnx", dynamic=True)
|
16 |
|
17 |
-
|
18 |
os.makedirs("models", exist_ok=True)
|
19 |
|
20 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
@@ -44,49 +43,61 @@ inference_count = 0
|
|
44 |
|
45 |
def detect_objects(image):
|
46 |
global total_inference_time, inference_count
|
47 |
-
|
48 |
if image is None:
|
49 |
return None
|
50 |
-
|
51 |
start_time = time.time()
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
inference_time = time.time() - start_time
|
64 |
total_inference_time += inference_time
|
65 |
inference_count += 1
|
66 |
avg_inference_time = total_inference_time / inference_count
|
67 |
fps = 1 / inference_time
|
68 |
-
|
69 |
-
#
|
70 |
-
output_image = image
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
73 |
for det in detections:
|
74 |
-
x1, y1, x2, y2, conf, class_id =
|
75 |
if conf < 0.3: # Confidence threshold
|
76 |
continue
|
77 |
-
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
label = f"Class {class_id} {conf:.2f}"
|
81 |
-
cv2.putText(output_image, label, (x1, y1 - 10),
|
82 |
-
|
83 |
-
|
84 |
# Display FPS
|
85 |
-
cv2.putText(output_image, f"FPS: {fps:.2f}", (20, 40),
|
86 |
-
|
87 |
-
|
88 |
-
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
89 |
-
|
90 |
return output_image
|
91 |
|
92 |
# Gradio Interface
|
|
|
9 |
from ultralytics import YOLO
|
10 |
|
11 |
# Load YOLOv5 model for ONNX export
|
12 |
+
model = YOLO("yolov5n.pt")
|
13 |
|
14 |
# Export to ONNX format
|
15 |
model.export(format="onnx", dynamic=True)
|
16 |
|
|
|
17 |
os.makedirs("models", exist_ok=True)
|
18 |
|
19 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
43 |
|
44 |
def detect_objects(image):
|
45 |
global total_inference_time, inference_count
|
|
|
46 |
if image is None:
|
47 |
return None
|
48 |
+
|
49 |
start_time = time.time()
|
50 |
+
|
51 |
+
# Preprocess image
|
52 |
+
original_shape = image.shape
|
53 |
+
input_shape = (416, 416)
|
54 |
+
image_resized = cv2.resize(image, input_shape)
|
55 |
+
image_norm = image_resized.astype(np.float32) / 255.0
|
56 |
+
image_transposed = np.transpose(image_norm, (2, 0, 1))
|
57 |
+
image_batch = np.expand_dims(image_transposed, axis=0)
|
58 |
+
|
59 |
+
# Get input name and run inference
|
60 |
+
input_name = session.get_inputs()[0].name
|
61 |
+
outputs = session.run(None, {input_name: image_batch})
|
62 |
+
|
63 |
+
# Process detections
|
64 |
+
detections = outputs[0][0] # First batch, all detections
|
65 |
+
|
66 |
+
# Calculate timing
|
67 |
inference_time = time.time() - start_time
|
68 |
total_inference_time += inference_time
|
69 |
inference_count += 1
|
70 |
avg_inference_time = total_inference_time / inference_count
|
71 |
fps = 1 / inference_time
|
72 |
+
|
73 |
+
# Create a copy of the original image for visualization
|
74 |
+
output_image = image.copy()
|
75 |
+
|
76 |
+
# Scale factor for bounding box coordinates
|
77 |
+
scale_x = original_shape[1] / input_shape[0]
|
78 |
+
scale_y = original_shape[0] / input_shape[1]
|
79 |
+
|
80 |
+
# Draw bounding boxes and labels
|
81 |
for det in detections:
|
82 |
+
x1, y1, x2, y2, conf, class_id = det[:6]
|
83 |
if conf < 0.3: # Confidence threshold
|
84 |
continue
|
85 |
+
|
86 |
+
# Convert to original image coordinates
|
87 |
+
x1, x2 = int(x1 * scale_x), int(x2 * scale_x)
|
88 |
+
y1, y2 = int(y1 * scale_y), int(y2 * scale_y)
|
89 |
+
class_id = int(class_id)
|
90 |
+
|
91 |
+
# Draw rectangle and label
|
92 |
+
color = tuple(map(int, colors[class_id]))
|
93 |
+
cv2.rectangle(output_image, (x1, y1), (x2, y2), color, 2)
|
94 |
label = f"Class {class_id} {conf:.2f}"
|
95 |
+
cv2.putText(output_image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
|
96 |
+
|
|
|
97 |
# Display FPS
|
98 |
+
cv2.putText(output_image, f"FPS: {fps:.2f}", (20, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
99 |
+
cv2.putText(output_image, f"Avg FPS: {1/avg_inference_time:.2f}", (20, 70), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
100 |
+
|
|
|
|
|
101 |
return output_image
|
102 |
|
103 |
# Gradio Interface
|