Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -3,58 +3,112 @@ import numpy as np
|
|
3 |
import gradio as gr
|
4 |
import cv2
|
5 |
import time
|
6 |
-
from PIL import Image
|
7 |
|
|
|
8 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
9 |
|
10 |
-
# Load
|
11 |
model = torch.hub.load("ultralytics/yolov5", "yolov5x", pretrained=True).to(device)
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
if device.type == "cuda":
|
14 |
model.half() # Use FP16 for performance boost
|
15 |
|
16 |
-
#
|
17 |
-
|
18 |
|
19 |
-
# Assign
|
20 |
-
|
|
|
21 |
|
22 |
def detect_objects(image):
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
with torch.no_grad():
|
30 |
-
results = model(
|
31 |
|
32 |
-
detections
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
for
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
-
# Gradio interface
|
51 |
iface = gr.Interface(
|
52 |
fn=detect_objects,
|
53 |
inputs=gr.Image(type="numpy", label="Upload Image"),
|
54 |
outputs=gr.Image(type="numpy", label="Detected Objects"),
|
55 |
-
title="Object Detection with
|
56 |
-
description="
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
allow_flagging="never",
|
|
|
58 |
)
|
59 |
|
60 |
-
|
|
|
|
|
|
3 |
import gradio as gr
|
4 |
import cv2
|
5 |
import time
|
|
|
6 |
|
7 |
+
# Check device availability
|
8 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
9 |
+
print(f"Using device: {device}")
|
10 |
|
11 |
+
# Load YOLOv5x model (larger model for better accuracy)
|
12 |
model = torch.hub.load("ultralytics/yolov5", "yolov5x", pretrained=True).to(device)
|
13 |
|
14 |
+
# Optimization configurations
|
15 |
+
model.conf = 0.3 # Confidence threshold of 0.3 as specified
|
16 |
+
model.iou = 0.3 # NMS IoU threshold of 0.3 as specified
|
17 |
+
model.classes = None # Detect all 80+ COCO classes
|
18 |
+
|
19 |
+
# Enable half-precision for GPU acceleration
|
20 |
if device.type == "cuda":
|
21 |
model.half() # Use FP16 for performance boost
|
22 |
|
23 |
+
# Set model to evaluation mode for inference
|
24 |
+
model.eval()
|
25 |
|
26 |
+
# Assign fixed colors to each class for consistent visualization
|
27 |
+
np.random.seed(42) # For reproducible colors
|
28 |
+
colors = np.random.uniform(0, 255, size=(len(model.names), 3))
|
29 |
|
30 |
def detect_objects(image):
|
31 |
+
"""
|
32 |
+
Process input image for object detection using YOLOv5
|
33 |
+
|
34 |
+
Args:
|
35 |
+
image: Input image as numpy array
|
36 |
+
|
37 |
+
Returns:
|
38 |
+
output_image: Image with detection results visualized
|
39 |
+
"""
|
40 |
+
start_time = time.time()
|
41 |
+
|
42 |
+
# Convert image to RGB if it's in BGR format
|
43 |
+
if image.shape[2] == 3 and image[0,0,0] == image[0,0,2]:
|
44 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
45 |
+
|
46 |
+
# Create a copy for drawing results
|
47 |
+
output_image = image.copy()
|
48 |
+
|
49 |
+
# Resize input to 640x640 for optimal processing speed
|
50 |
+
input_size = 640
|
51 |
+
|
52 |
+
# Perform inference with no gradient calculation
|
53 |
with torch.no_grad():
|
54 |
+
results = model(image, size=input_size)
|
55 |
|
56 |
+
# Extract detections from first (and only) image
|
57 |
+
detections = results.pred[0].cpu().numpy()
|
58 |
+
|
59 |
+
# Draw each detection on the output image
|
60 |
+
for *xyxy, conf, cls in detections:
|
61 |
+
# Extract coordinates and convert to integers
|
62 |
+
x1, y1, x2, y2 = map(int, xyxy)
|
63 |
+
class_id = int(cls)
|
64 |
+
|
65 |
+
# Get color for this class
|
66 |
+
color = colors[class_id].tolist()
|
67 |
+
|
68 |
+
# Draw bounding box
|
69 |
+
cv2.rectangle(output_image, (x1, y1), (x2, y2), color, 2)
|
70 |
+
|
71 |
+
# Create label with class name and confidence score
|
72 |
+
label = f"{model.names[class_id]} {conf:.2f}"
|
73 |
+
|
74 |
+
# Calculate text size for background rectangle
|
75 |
+
(w, h), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
|
76 |
+
|
77 |
+
# Draw label background
|
78 |
+
cv2.rectangle(output_image, (x1, y1 - 20), (x1 + w, y1), color, -1)
|
79 |
+
|
80 |
+
# Draw label text
|
81 |
+
cv2.putText(output_image, label, (x1, y1 - 5),
|
82 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
|
83 |
+
|
84 |
+
# Calculate and display FPS
|
85 |
+
fps = 1 / (time.time() - start_time)
|
86 |
+
|
87 |
+
# Add FPS counter to the image
|
88 |
+
cv2.putText(output_image, f"FPS: {fps:.2f}", (10, 30),
|
89 |
+
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
90 |
+
|
91 |
+
print(f"Detection complete - FPS: {fps:.2f}")
|
92 |
+
|
93 |
+
return output_image
|
94 |
|
95 |
+
# Create Gradio interface
|
96 |
iface = gr.Interface(
|
97 |
fn=detect_objects,
|
98 |
inputs=gr.Image(type="numpy", label="Upload Image"),
|
99 |
outputs=gr.Image(type="numpy", label="Detected Objects"),
|
100 |
+
title="Optimized Object Detection with YOLOv5x",
|
101 |
+
description="""
|
102 |
+
This system utilizes YOLOv5x to detect 80+ object types from the COCO dataset.
|
103 |
+
- Processing speed: Optimized for 30+ FPS at 640x640 resolution
|
104 |
+
- Confidence threshold: 0.3
|
105 |
+
- IoU threshold: 0.3
|
106 |
+
- Color-coded bounding boxes with confidence scores
|
107 |
+
""",
|
108 |
allow_flagging="never",
|
109 |
+
examples=["spring_street_after.jpg", "pexels-hikaique-109919.jpg"],
|
110 |
)
|
111 |
|
112 |
+
# Launch the interface
|
113 |
+
if __name__ == "__main__":
|
114 |
+
iface.launch()
|