Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -3,22 +3,40 @@ import numpy as np
|
|
3 |
import gradio as gr
|
4 |
import cv2
|
5 |
import time
|
|
|
|
|
6 |
|
7 |
-
#
|
|
|
|
|
|
|
8 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
9 |
print(f"Using device: {device}")
|
10 |
|
11 |
-
# Load YOLOv5x model
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
# Optimization configurations
|
15 |
model.conf = 0.3 # Confidence threshold of 0.3 as specified
|
16 |
model.iou = 0.3 # NMS IoU threshold of 0.3 as specified
|
17 |
model.classes = None # Detect all 80+ COCO classes
|
18 |
|
19 |
-
#
|
20 |
if device.type == "cuda":
|
21 |
-
|
|
|
|
|
|
|
|
|
22 |
|
23 |
# Set model to evaluation mode for inference
|
24 |
model.eval()
|
@@ -27,6 +45,10 @@ model.eval()
|
|
27 |
np.random.seed(42) # For reproducible colors
|
28 |
colors = np.random.uniform(0, 255, size=(len(model.names), 3))
|
29 |
|
|
|
|
|
|
|
|
|
30 |
def detect_objects(image):
|
31 |
"""
|
32 |
Process input image for object detection using YOLOv5
|
@@ -37,22 +59,30 @@ def detect_objects(image):
|
|
37 |
Returns:
|
38 |
output_image: Image with detection results visualized
|
39 |
"""
|
40 |
-
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
45 |
|
46 |
# Create a copy for drawing results
|
47 |
output_image = image.copy()
|
48 |
|
49 |
-
#
|
50 |
input_size = 640
|
51 |
|
52 |
# Perform inference with no gradient calculation
|
53 |
with torch.no_grad():
|
|
|
54 |
results = model(image, size=input_size)
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
# Extract detections from first (and only) image
|
57 |
detections = results.pred[0].cpu().numpy()
|
58 |
|
@@ -81,34 +111,67 @@ def detect_objects(image):
|
|
81 |
cv2.putText(output_image, label, (x1, y1 - 5),
|
82 |
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
|
83 |
|
84 |
-
# Calculate
|
85 |
-
fps = 1 /
|
86 |
|
87 |
# Add FPS counter to the image
|
88 |
cv2.putText(output_image, f"FPS: {fps:.2f}", (10, 30),
|
89 |
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
90 |
-
|
91 |
-
|
92 |
|
93 |
return output_image
|
94 |
|
95 |
-
#
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
- Processing speed: Optimized for 30+ FPS at 640x640 resolution
|
104 |
- Confidence threshold: 0.3
|
105 |
- IoU threshold: 0.3
|
106 |
-
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
-
# Launch
|
113 |
-
|
114 |
-
iface.launch()
|
|
|
3 |
import gradio as gr
|
4 |
import cv2
|
5 |
import time
|
6 |
+
import os
|
7 |
+
from pathlib import Path
|
8 |
|
9 |
+
# Create cache directory for models if it doesn't exist
|
10 |
+
os.makedirs("models", exist_ok=True)
|
11 |
+
|
12 |
+
# Check device availability - Hugging Face Spaces often provides GPU
|
13 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
print(f"Using device: {device}")
|
15 |
|
16 |
+
# Load YOLOv5x model with caching for faster startup
|
17 |
+
model_path = Path("models/yolov5x.pt")
|
18 |
+
if model_path.exists():
|
19 |
+
print(f"Loading model from cache: {model_path}")
|
20 |
+
model = torch.hub.load("ultralytics/yolov5", "yolov5x", pretrained=True,
|
21 |
+
source="local", path=str(model_path)).to(device)
|
22 |
+
else:
|
23 |
+
print("Downloading YOLOv5x model and caching...")
|
24 |
+
model = torch.hub.load("ultralytics/yolov5", "yolov5x", pretrained=True).to(device)
|
25 |
+
# Cache the model for faster startup next time
|
26 |
+
torch.save(model.state_dict(), model_path)
|
27 |
|
28 |
# Optimization configurations
|
29 |
model.conf = 0.3 # Confidence threshold of 0.3 as specified
|
30 |
model.iou = 0.3 # NMS IoU threshold of 0.3 as specified
|
31 |
model.classes = None # Detect all 80+ COCO classes
|
32 |
|
33 |
+
# Optimize for GPU if available
|
34 |
if device.type == "cuda":
|
35 |
+
# Use mixed precision for performance boost
|
36 |
+
model.half()
|
37 |
+
else:
|
38 |
+
# On CPU, optimize operations
|
39 |
+
torch.set_num_threads(os.cpu_count())
|
40 |
|
41 |
# Set model to evaluation mode for inference
|
42 |
model.eval()
|
|
|
45 |
np.random.seed(42) # For reproducible colors
|
46 |
colors = np.random.uniform(0, 255, size=(len(model.names), 3))
|
47 |
|
48 |
+
# Track performance metrics
|
49 |
+
total_inference_time = 0
|
50 |
+
inference_count = 0
|
51 |
+
|
52 |
def detect_objects(image):
|
53 |
"""
|
54 |
Process input image for object detection using YOLOv5
|
|
|
59 |
Returns:
|
60 |
output_image: Image with detection results visualized
|
61 |
"""
|
62 |
+
global total_inference_time, inference_count
|
63 |
|
64 |
+
if image is None:
|
65 |
+
return None
|
66 |
+
|
67 |
+
start_time = time.time()
|
68 |
|
69 |
# Create a copy for drawing results
|
70 |
output_image = image.copy()
|
71 |
|
72 |
+
# Fixed input size for optimal processing
|
73 |
input_size = 640
|
74 |
|
75 |
# Perform inference with no gradient calculation
|
76 |
with torch.no_grad():
|
77 |
+
# Convert image to tensor for faster processing
|
78 |
results = model(image, size=input_size)
|
79 |
|
80 |
+
# Record inference time (model processing only)
|
81 |
+
inference_time = time.time() - start_time
|
82 |
+
total_inference_time += inference_time
|
83 |
+
inference_count += 1
|
84 |
+
avg_inference_time = total_inference_time / inference_count
|
85 |
+
|
86 |
# Extract detections from first (and only) image
|
87 |
detections = results.pred[0].cpu().numpy()
|
88 |
|
|
|
111 |
cv2.putText(output_image, label, (x1, y1 - 5),
|
112 |
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
|
113 |
|
114 |
+
# Calculate FPS
|
115 |
+
fps = 1 / inference_time
|
116 |
|
117 |
# Add FPS counter to the image
|
118 |
cv2.putText(output_image, f"FPS: {fps:.2f}", (10, 30),
|
119 |
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
120 |
+
cv2.putText(output_image, f"Avg FPS: {1/avg_inference_time:.2f}", (10, 70),
|
121 |
+
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
122 |
|
123 |
return output_image
|
124 |
|
125 |
+
# Define example images - these will be stored in the same directory as this script
|
126 |
+
example_images = [
|
127 |
+
"examples/spring_street_after.jpg",
|
128 |
+
"examples/pexels-hikaique-109919.jpg"
|
129 |
+
]
|
130 |
+
|
131 |
+
# Make sure example directory exists
|
132 |
+
os.makedirs("examples", exist_ok=True)
|
133 |
+
|
134 |
+
# Create Gradio interface - optimized for Hugging Face Spaces
|
135 |
+
with gr.Blocks(title="Optimized YOLOv5 Object Detection") as demo:
|
136 |
+
gr.Markdown("""
|
137 |
+
# Optimized YOLOv5 Object Detection
|
138 |
+
|
139 |
+
This system utilizes YOLOv5 to detect 80+ object types from the COCO dataset.
|
140 |
+
|
141 |
+
**Performance Features:**
|
142 |
- Processing speed: Optimized for 30+ FPS at 640x640 resolution
|
143 |
- Confidence threshold: 0.3
|
144 |
- IoU threshold: 0.3
|
145 |
+
- Real-time FPS display
|
146 |
+
|
147 |
+
Simply upload an image or take a photo with your camera to see the detections!
|
148 |
+
""")
|
149 |
+
|
150 |
+
with gr.Row():
|
151 |
+
with gr.Column(scale=1):
|
152 |
+
input_image = gr.Image(label="Input Image", type="numpy")
|
153 |
+
with gr.Row():
|
154 |
+
camera_button = gr.Button("Take Photo from Camera")
|
155 |
+
clear_button = gr.Button("Clear")
|
156 |
+
|
157 |
+
with gr.Column(scale=1):
|
158 |
+
output_image = gr.Image(label="Detected Objects", type="numpy")
|
159 |
+
|
160 |
+
# Example gallery
|
161 |
+
gr.Examples(
|
162 |
+
examples=example_images,
|
163 |
+
inputs=input_image,
|
164 |
+
outputs=output_image,
|
165 |
+
fn=detect_objects,
|
166 |
+
cache_examples=True # Cache for faster response
|
167 |
+
)
|
168 |
+
|
169 |
+
# Set up the inference call
|
170 |
+
input_image.change(fn=detect_objects, inputs=input_image, outputs=output_image)
|
171 |
+
|
172 |
+
# Event listeners for buttons
|
173 |
+
camera_button.click(lambda: None, None, input_image, js="() => {document.querySelector('button.webcam').click(); return null}")
|
174 |
+
clear_button.click(lambda: None, None, [input_image, output_image])
|
175 |
|
176 |
+
# Launch for Hugging Face Spaces
|
177 |
+
demo.launch()
|
|