Aumkeshchy2003 commited on
Commit
d5e3d23
·
verified ·
1 Parent(s): 6fb7418

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +32 -142
app.py CHANGED
@@ -6,228 +6,118 @@ import time
6
  import os
7
  from pathlib import Path
8
 
9
- # Create cache directory for models if it doesn't exist
10
  os.makedirs("models", exist_ok=True)
11
 
12
- # Check device availability - Hugging Face Spaces often provides GPU
13
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
14
  print(f"Using device: {device}")
15
 
16
- # Load YOLOv5x model with caching for faster startup
17
  model_path = Path("models/yolov5x.pt")
18
  if model_path.exists():
19
  print(f"Loading model from cache: {model_path}")
20
- model = torch.hub.load("ultralytics/yolov5", "yolov5x", pretrained=True,
21
- source="local", path=str(model_path)).to(device)
22
  else:
23
  print("Downloading YOLOv5x model and caching...")
24
  model = torch.hub.load("ultralytics/yolov5", "yolov5x", pretrained=True).to(device)
25
- # Cache the model for faster startup next time
26
  torch.save(model.state_dict(), model_path)
27
 
28
- # Optimization configurations
29
- model.conf = 0.3 # Confidence threshold of 0.3 as specified
30
- model.iou = 0.3 # NMS IoU threshold of 0.3 as specified
31
- model.classes = None # Detect all 80+ COCO classes
32
 
33
- # Optimize for GPU if available
34
  if device.type == "cuda":
35
- # Use mixed precision for performance boost
36
  model.half()
37
  else:
38
- # On CPU, optimize operations
39
  torch.set_num_threads(os.cpu_count())
40
 
41
- # Set model to evaluation mode for inference
42
  model.eval()
43
 
44
- # Assign fixed colors to each class for consistent visualization
45
- np.random.seed(42) # For reproducible colors
46
- # Generate more attractive, vibrant colors
47
- colors = []
48
- for i in range(len(model.names)):
49
- # Use HSV color space for more vibrant colors
50
- hue = i / len(model.names)
51
- # Full saturation and value for vivid colors
52
- saturation = 0.9
53
- value = 1.0
54
- # Convert HSV to RGB
55
- h = hue * 360
56
- s = saturation
57
- v = value
58
- c = v * s
59
- x = c * (1 - abs((h / 60) % 2 - 1))
60
- m = v - c
61
-
62
- if h < 60:
63
- r, g, b = c, x, 0
64
- elif h < 120:
65
- r, g, b = x, c, 0
66
- elif h < 180:
67
- r, g, b = 0, c, x
68
- elif h < 240:
69
- r, g, b = 0, x, c
70
- elif h < 300:
71
- r, g, b = x, 0, c
72
- else:
73
- r, g, b = c, 0, x
74
-
75
- r, g, b = (r + m) * 255, (g + m) * 255, (b + m) * 255
76
- colors.append([int(b), int(g), int(r)]) # OpenCV uses BGR
77
 
78
- # Track performance metrics
79
  total_inference_time = 0
80
  inference_count = 0
81
 
82
  def detect_objects(image):
83
-
84
  global total_inference_time, inference_count
85
 
86
  if image is None:
87
  return None
88
 
89
  start_time = time.time()
90
-
91
- # Create a copy for drawing results
92
  output_image = image.copy()
93
-
94
- # Fixed input size for optimal processing
95
  input_size = 640
96
 
97
- # Perform inference with no gradient calculation
98
  with torch.no_grad():
99
- # Convert image to tensor for faster processing
100
  results = model(image, size=input_size)
101
 
102
- # Record inference time (model processing only)
103
  inference_time = time.time() - start_time
104
  total_inference_time += inference_time
105
  inference_count += 1
106
  avg_inference_time = total_inference_time / inference_count
107
 
108
- # Extract detections from first (and only) image
109
  detections = results.pred[0].cpu().numpy()
110
 
111
  for *xyxy, conf, cls in detections:
112
  x1, y1, x2, y2 = map(int, xyxy)
113
  class_id = int(cls)
 
114
 
115
- color = colors[class_id]
116
-
117
- cv2.rectangle(output_image, (x1, y1), (x2, y2), color, 3)
118
 
119
  label = f"{model.names[class_id]} {conf:.2f}"
120
-
121
- font_scale = 0.7
122
- font_thickness = 2
123
-
124
  (w, h), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, font_scale, font_thickness)
125
 
126
- alpha = 0.7
127
- overlay = output_image.copy()
128
- cv2.rectangle(overlay, (x1, y1 - h - 10), (x1 + w + 10, y1), color, -1)
129
- output_image = cv2.addWeighted(overlay, alpha, output_image, 1 - alpha, 0)
130
-
131
- cv2.putText(output_image, label, (x1 + 5, y1 - 5),
132
- cv2.FONT_HERSHEY_SIMPLEX, font_scale, (0, 0, 0), font_thickness + 1)
133
-
134
  cv2.putText(output_image, label, (x1 + 5, y1 - 5),
135
- cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 255, 255), font_thickness)
136
 
137
- # Calculate FPS
138
  fps = 1 / inference_time
139
 
140
-
141
- h, w = output_image.shape[:2]
142
-
143
  overlay = output_image.copy()
144
-
145
- fps_bg_height = 90
146
- fps_bg_width = 200
147
- fps_bg_corner = 15
148
-
149
- for i in range(fps_bg_height):
150
- alpha = 0.8 - (i / fps_bg_height * 0.3)
151
- color_value = int(220 * (1 - i / fps_bg_height))
152
- cv2.rectangle(overlay,
153
- (10, 10 + i),
154
- (fps_bg_width, 10 + i),
155
- (40, color_value, 40),
156
- -1)
157
-
158
- cv2.addWeighted(overlay, 0.8, output_image, 0.2, 0, output_image,
159
- dst=output_image[10:10+fps_bg_height, 10:10+fps_bg_width])
160
-
161
- cv2.rectangle(output_image,
162
- (10, 10),
163
- (fps_bg_width, 10 + fps_bg_height),
164
- (255, 255, 255),
165
- 2,
166
- cv2.LINE_AA)
167
-
168
- cv2.putText(output_image, "Performance", (20, 35),
169
- cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2, cv2.LINE_AA)
170
-
171
- cv2.putText(output_image, f"Current: {fps:.1f} FPS", (20, 65),
172
- cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2, cv2.LINE_AA)
173
-
174
- cv2.putText(output_image, f"Average: {1/avg_inference_time:.1f} FPS", (20, 90),
175
- cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2, cv2.LINE_AA)
176
 
177
  return output_image
178
 
179
- # Define example images - these will be stored in the same directory as this script
180
- example_images = [
181
- "spring_street_after.jpg",
182
- "pexels-hikaique-109919.jpg"
183
- ]
184
-
185
- # Make sure example directory exists
186
  os.makedirs("examples", exist_ok=True)
187
 
188
- # Create Gradio interface - optimized for Hugging Face Spaces
189
  with gr.Blocks(title="Optimized YOLOv5 Object Detection") as demo:
190
  gr.Markdown("""
191
  # Optimized YOLOv5 Object Detection
192
-
193
- This system utilizes YOLOv5 to detect 80+ object types from the COCO dataset.
194
-
195
- **Performance Features:**
196
- - Processing speed: Optimized for 30+ FPS at 640x640 resolution
197
- - Confidence threshold: 0.3
198
- - IoU threshold: 0.3
199
-
200
- Upload an image, then click Submit to see the detections!
201
  """)
202
 
203
  with gr.Row():
204
  with gr.Column(scale=1):
205
  input_image = gr.Image(label="Input Image", type="numpy")
206
- with gr.Row():
207
- clear_button = gr.Button("Clear", size="sm")
208
- submit_button = gr.Button("Submit", variant="primary", size="lg")
209
-
210
  with gr.Column(scale=1):
211
  output_image = gr.Image(label="Detected Objects", type="numpy")
212
 
 
 
 
 
213
  gr.Examples(
214
  examples=example_images,
215
  inputs=input_image,
216
  outputs=output_image,
217
  fn=detect_objects,
218
- cache_examples=True # Cache for faster response
219
  )
220
 
221
  submit_button.click(fn=detect_objects, inputs=input_image, outputs=output_image)
222
- clear_button.click(
223
- fn=lambda: (None, None),
224
- outputs=[input_image, output_image],
225
- queue=False
226
- ).then(
227
- fn=detect_objects,
228
- inputs=input_image,
229
- outputs=output_image
230
- )
231
 
232
- # Launch for Hugging Face Spaces
233
- demo.launch()
 
6
  import os
7
  from pathlib import Path
8
 
9
+ # Create cache directory for models
10
  os.makedirs("models", exist_ok=True)
11
 
 
12
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
13
  print(f"Using device: {device}")
14
 
15
+ # Load YOLOv5x model
16
  model_path = Path("models/yolov5x.pt")
17
  if model_path.exists():
18
  print(f"Loading model from cache: {model_path}")
19
+ model = torch.hub.load("ultralytics/yolov5", "yolov5x", pretrained=True, source="local", path=str(model_path)).to(device)
 
20
  else:
21
  print("Downloading YOLOv5x model and caching...")
22
  model = torch.hub.load("ultralytics/yolov5", "yolov5x", pretrained=True).to(device)
 
23
  torch.save(model.state_dict(), model_path)
24
 
25
+ # Model configurations
26
+ model.conf = 0.3 # Confidence threshold
27
+ model.iou = 0.3 # IoU threshold
28
+ model.classes = None # Detect all classes
29
 
 
30
  if device.type == "cuda":
 
31
  model.half()
32
  else:
 
33
  torch.set_num_threads(os.cpu_count())
34
 
 
35
  model.eval()
36
 
37
+ np.random.seed(42)
38
+ colors = np.random.uniform(0, 255, size=(len(model.names), 3))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
 
 
40
  total_inference_time = 0
41
  inference_count = 0
42
 
43
  def detect_objects(image):
 
44
  global total_inference_time, inference_count
45
 
46
  if image is None:
47
  return None
48
 
49
  start_time = time.time()
 
 
50
  output_image = image.copy()
 
 
51
  input_size = 640
52
 
 
53
  with torch.no_grad():
 
54
  results = model(image, size=input_size)
55
 
 
56
  inference_time = time.time() - start_time
57
  total_inference_time += inference_time
58
  inference_count += 1
59
  avg_inference_time = total_inference_time / inference_count
60
 
 
61
  detections = results.pred[0].cpu().numpy()
62
 
63
  for *xyxy, conf, cls in detections:
64
  x1, y1, x2, y2 = map(int, xyxy)
65
  class_id = int(cls)
66
+ color = colors[class_id].tolist()
67
 
68
+ # Thinner, stylish bounding boxes
69
+ cv2.rectangle(output_image, (x1, y1), (x2, y2), color, 2, lineType=cv2.LINE_AA)
 
70
 
71
  label = f"{model.names[class_id]} {conf:.2f}"
72
+ font_scale, font_thickness = 0.7, 1
 
 
 
73
  (w, h), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, font_scale, font_thickness)
74
 
75
+ cv2.rectangle(output_image, (x1, y1 - h - 10), (x1 + w + 10, y1), color, -1)
 
 
 
 
 
 
 
76
  cv2.putText(output_image, label, (x1 + 5, y1 - 5),
77
+ cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 255, 255), font_thickness, lineType=cv2.LINE_AA)
78
 
 
79
  fps = 1 / inference_time
80
 
81
+ # Stylish FPS display
 
 
82
  overlay = output_image.copy()
83
+ cv2.rectangle(overlay, (10, 10), (300, 80), (0, 0, 0), -1)
84
+ output_image = cv2.addWeighted(overlay, 0.6, output_image, 0.4, 0)
85
+ cv2.putText(output_image, f"FPS: {fps:.2f}", (20, 40),
86
+ cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2, lineType=cv2.LINE_AA)
87
+ cv2.putText(output_image, f"Avg FPS: {1/avg_inference_time:.2f}", (20, 70),
88
+ cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2, lineType=cv2.LINE_AA)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89
 
90
  return output_image
91
 
92
+ example_images = ["spring_street_after.jpg", "pexels-hikaique-109919.jpg"]
 
 
 
 
 
 
93
  os.makedirs("examples", exist_ok=True)
94
 
 
95
  with gr.Blocks(title="Optimized YOLOv5 Object Detection") as demo:
96
  gr.Markdown("""
97
  # Optimized YOLOv5 Object Detection
98
+ Detects objects using YOLOv5 with enhanced visualization and FPS tracking.
 
 
 
 
 
 
 
 
99
  """)
100
 
101
  with gr.Row():
102
  with gr.Column(scale=1):
103
  input_image = gr.Image(label="Input Image", type="numpy")
104
+
 
 
 
105
  with gr.Column(scale=1):
106
  output_image = gr.Image(label="Detected Objects", type="numpy")
107
 
108
+ with gr.Row():
109
+ clear_button = gr.Button("Clear")
110
+ submit_button = gr.Button("Submit", variant="primary")
111
+
112
  gr.Examples(
113
  examples=example_images,
114
  inputs=input_image,
115
  outputs=output_image,
116
  fn=detect_objects,
117
+ cache_examples=True
118
  )
119
 
120
  submit_button.click(fn=detect_objects, inputs=input_image, outputs=output_image)
121
+ clear_button.click(lambda: (None, None), None, [input_image, output_image])
 
 
 
 
 
 
 
 
122
 
123
+ demo.launch()